SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations

SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射

基本信息

  • 批准号:
    1319448
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

A large number of "big data" and "big simulation" applications, such as those for determining network models or simulations of partial differential equation models, concern high dimensional data that are sparse. Sparse data structures and algorithms present significant advantages in terms of storage and computational costs. However, with only a few operations per data element, efficient and scalable implementations are difficult to achieve on current and emerging high performance computing systems with very high degrees of core level parallelism, complex node interconnect topology and multicore/manycore nodes with non-uniform memory architectures (NUMA). This proposal develops and evaluates á-embedded graph hardware-software models and attendant data locality-preserving and NUMA-aware application to core/thread mappings to enhance performance and parallel scalability. Consider an application task graph A, weighted with measures of work and data sharing that is approximately embedded in two or three dimensions, to obtain an á-embedded graph A. Additionally, consider a weighted graph of a HPC system that is naturally assigned coordinates to obtain an á-embedded host graph model H. This proposal develops parallel algorithms to compute interconnect topology-aware mappings of A to H in order to optimize performance measures such as congestion and dilation while preserving load balance. Additionally, at a multicore node in H that is assigned a subgraph of A, (i) sparse data are reordered to enhance parallelism and locality, and (ii) a dynamic fine-grain NUMA-aware task scheduling is applied to respond through work-stealing to core variations in performance from resource conflicts, throttling etc. Finally, through insights gained from á-embedded graph models, sparse matrix algorithms are reformulated to enhance communication avoidance, soft error resilience and data preconditioning. Outcomes include enabling weak scaling to a very large number of cores by extracting parallelism at fine, medium and large-grains, and significantly enhanced fixed and scaled problem efficiencies through locality preservation. The interconnect topology-aware models and maps hold the potential for impact on very large scale HPC workloads through potential incorporation into the Message Passing Interface for enhanced sparse communications. Additionally, the proposed locality-aware mappings and NUMA-aware scheduling can potentially benefit the very large base of modeling and simulation applications that run on small multicore clusters. Graduate student training is enhanced through a "scale-up" challenge component in an interdisciplinary course on computational science and engineering. High school students are introduced to parallel computing through summer in-residence programs seeking to broaden participation in science and engineering from underrepresented communities.
大量的“大数据”和“大模拟”应用,例如用于确定网络模型或模拟偏微分方程模型的应用,都涉及稀疏的高维数据。稀疏数据结构和算法在存储方面具有显着的优势。然而,由于每个数据元素只有很少的操作,在当前和新兴的高性能计算系统上很难实现高效和可扩展的实现,这些系统具有非常高的核心级并行性、复杂的节点互连拓扑和多核/众核节点。非统一内存架构 (NUMA)。该提案开发并评估嵌入式图硬件软件模型以及随之而来的数据局部性保留和 NUMA 感知应用程序到核心/线程的映射,以增强性能和并行可扩展性。 A,用近似嵌入二维或三维的工作和数据共享度量进行加权,以获得 á-嵌入图 A。此外,考虑自然分配的 HPC 系统的加权图该提案开发了并行算法来计算 A 到 H 的互连拓扑感知映射,以便在保持负载平衡的同时优化拥塞和扩张等性能指标。此外,在多核节点上在分配了 A 的子图的 H 中,(i) 稀疏数据被重新排序以增强并行性和局部性,以及 (ii) 应用动态细粒度 NUMA 感知任务调度来通过工作窃取进行响应最后,通过从嵌入图模型中获得的见解,稀疏矩阵算法被重新制定,以增强通信避免、软错误恢复能力和数据预处理,结果包括实现弱扩展至非常大的能力。通过提取细粒度、中粒度和大粒度的并行性来减少核心数量,并通过局部性保留显着提高固定和缩放问题的效率。互连拓扑感知模型和映射具有对超大规模产生影响的潜力。此外,所提出的位置感知映射和 NUMA 感知调度可能有利于在小型多核研究生培训上运行的大量建模和仿真应用程序。通过计算科学与工程跨学科课程中的“扩大规模”挑战部分得到加强,通过暑期住院项目向高中生介绍并行计算,以扩大代表性不足的社区对科学和工程的参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Padma Raghavan其他文献

Multi-resource scheduling of moldable workflows
可成型工作流程的多资源调度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Perotin;Sandhya Kandaswamy;Hongyang Sun;Padma Raghavan
  • 通讯作者:
    Padma Raghavan
Journal of Parallel and Distributed Computing
并行与分布式计算杂志
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Perotin;S;hya K;aswamy;hya;aswamy;Hongyang Sun;Padma Raghavan
  • 通讯作者:
    Padma Raghavan
Realizing the potential of data science
实现数据科学的潜力
  • DOI:
    10.1145/3188721
  • 发表时间:
    2018-03-26
  • 期刊:
  • 影响因子:
    22.7
  • 作者:
    F. Berman;Rob A. Rutenbar;B. Hailpern;Henrik Christensen;S. Davidson;D. Estrin;Michael J. Franklin;M. Martonosi;Padma Raghavan;V. Stodden;A. Szalay
  • 通讯作者:
    A. Szalay

Padma Raghavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Padma Raghavan', 18)}}的其他基金

NSF I-Corps Hub (Track 1): Mid-South Region
NSF I-Corps 中心(轨道 1):中南部地区
  • 批准号:
    2229521
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Cooperative Agreement
NSF I-Corps Hub (Track 1): Mid-South Region
NSF I-Corps 中心(轨道 1):中南部地区
  • 批准号:
    2229521
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: SHF: Small: Learning Fault Tolerance at Scale
合作研究:SHF:小型:大规模学习容错
  • 批准号:
    2135309
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
  • 批准号:
    1719674
  • 财政年份:
    2016
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
DC: Small: Adaptive Sparse Data Mining On Multicores
DC:小型:多核上的自适应稀疏数据挖掘
  • 批准号:
    1017882
  • 财政年份:
    2010
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
MRI: Acquistion of A Scalable Instrument for Discovery through Computing
MRI:获取可扩展的仪器,通过计算进行发现
  • 批准号:
    0821527
  • 财政年份:
    2008
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Toward a Linear Time Sparse Solver with Locality-Enhanced Scalable Parallelism
具有局部增强的可扩展并行性的线性时间稀疏求解器
  • 批准号:
    0830679
  • 财政年份:
    2008
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CSR-SMA: Toward Model-Driven Multilevel Analysis and Optimization of Multicomponent Computer Systems
CSR-SMA:迈向模型驱动的多组件计算机系统的多级分析和优化
  • 批准号:
    0720749
  • 财政年份:
    2007
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Adaptive Software for Extreme-Scale Scientific Computing: Co-Managing Quality-Performance-Power Tradeoffs
用于超大规模科学计算的自适应软件:共同管理质量-性能-功耗权衡
  • 批准号:
    0444345
  • 财政年份:
    2004
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Grant to Support Activities at the Eleventh SIAM Conference on Parallel Processing for Scientific Computing
资助支持第十一届 SIAM 科学计算并行处理会议的活动
  • 批准号:
    0340869
  • 财政年份:
    2003
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: Beyond Accelerators - Using FPGAs to Achieve Fine-grained Control of Data-flows in Embedded SoCs
SHF:小型:超越加速器 - 使用 FPGA 实现嵌入式 SoC 中数据流的细粒度控制
  • 批准号:
    2008799
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SHF: Small: Exploring Architectural Support for Full-Stack Equational Reasoning in Critical Embedded Systems
SHF:小型:探索关键嵌入式系统中全栈方程推理的架构支持
  • 批准号:
    1717779
  • 财政年份:
    2017
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SHF: Small: Embedded Graph Software-Hardware Models and Maps for Scalable Sparse Computations
SHF:小型:用于可扩展稀疏计算的嵌入式图软件硬件模型和映射
  • 批准号:
    1719674
  • 财政年份:
    2016
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SHF: Small: Uncertainty Modeling and Design Methods for Heterogeneous Embedded Systems
SHF:小型:异构嵌入式系统的不确定性建模和设计方法
  • 批准号:
    1524909
  • 财政年份:
    2015
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SHF: SMALL: Embedded Cooling of High-Performance ICs Using Novel Nanostructured Thermoelectrics: Multiscale Software Development and Device Optimization
SHF:小型:使用新型纳米结构热电材料的高性能 IC 嵌入式冷却:多尺度软件开发和设备优化
  • 批准号:
    1218839
  • 财政年份:
    2012
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了