SHF:Small:Scalable Memory Hierarchies with Fine-Grained QoS Guarantees

SHF:Small:具有细粒度 QoS 保证的可扩展内存层次结构

基本信息

项目摘要

Multicore chips are now mainstream, and increasing the number of cores per chip has become the primary way to improve performance. Current multicores rely on sophisticated cache hierarchies to mitigate the high latency, limited bandwidth, and high energy of main memory accesses, which often limit system performance. These on-chip caches consume more than half of chip area, and most of this cache space is shared among all cores. Sharing this capacity has major advantages, such as improving space utilization and accelerating core-to-core communication, but poses two fundamental problems. First, with more cores, cache accesses take longer and consume more energy, severely limiting scalability. Second, concurrently executing applications contend for this shared cache capacity, which can cause unpredictable performance degradation among them. The goal of this project is to redesign the cache hierarchy to make it both highly scalable, and to provide strict isolation among competing applications, enabling end-to-end performance guarantees. If successful, this work will improve the performance and energy efficiency of future processors, enabling systems with larger numbers of cores than previously possible. Moreover, these systems will eliminate interference and enforce quality of service guarantees among competing applications, even when those applications are latency-critical. This will enable much higher utilization of shared computing infrastructure (such as cloud computing servers), potentially saving billions of dollars in IT infrastructure and energy consumption.To achieve the dual goals of high scalability and quality-of-service (QoS) guarantees efficiently, this project proposes an integrated hardware-software approach, where hardware exposes a small and general set of mechanisms to control cache allocations, and software uses these mechanisms to implement both partitioning and non-uniform access policies efficiently. At the hardware level, a novel cache organization provides thousands of fine-grained, spatially configurable partitions, implements lightweight monitoring and reconfiguration mechanisms to guide software policies effectively, and supports full-system scalable cache coherence cheaply. At the software level, a system-level runtime leverages this hardware to implement dynamic data classification, placement, migration, and replication mechanisms, maximizing system performance and efficiency, while at the same time enforcing the strict QoS guarantees of latency-critical workloads, transparently to applications. Combined with existing bandwidth partitioning approaches, these techniques will enforce full-system QoS guarantees by controlling all on-chip shared resources (caches, on-chip network, and memory controllers). In addition, the infrastructure and benchmarks developed as part of this project will be publicly released, allowing other researchers to build on the results of this work, and enabling the development of course projects and other educational activities in large-scale parallel computer architecture, both at MIT and elsewhere.
多核芯片现已成为主流,增加单芯片核心数成为提升性能的主要途径。当前的多核依靠复杂的缓存层次结构来缓解主内存访问的高延迟、有限带宽和高能耗,这些通常会限制系统性能。这些片上缓存占用了一半以上的芯片面积,并且大部分缓存空间由所有内核共享。共享这种能力具有重大优势,例如提高空间利用率和加速核心间通信,但也带来了两个基本问题。首先,随着内核数量的增加,缓存访问需要更长的时间并消耗更多的能量,严重限制了可扩展性。其次,并发执行的应用程序会争夺共享缓存容量,这可能会导致它们之间不可预测的性能下降。该项目的目标是重新设计缓存层次结构,使其具有高度可扩展性,并在竞争应用程序之间提供严格的隔离,从而实现端到端的性能保证。如果成功,这项工作将提高未来处理器的性能和能效,使系统拥有比以前更多的核心数量。此外,这些系统将消除竞争应用程序之间的干扰并强制执行服务质量保证,即使这些应用程序对延迟至关重要。这将使共享计算基础设施(例如云计算服务器)的利用率大大提高,有可能节省数十亿美元的IT基础设施和能源消耗。为了有效实现高可扩展性和服务质量(QoS)保证的双重目标,该项目提出了一种集成的硬件-软件方法,其中硬件公开了一组小型且通用的机制来控制缓存分配,而软件使用这些机制来有效地实现分区和非统一访问策略。在硬件层面,新颖的缓存组织提供了数千个细粒度、空间可配置的分区,实现轻量级监控和重新配置机制以有效指导软件策略,并以低廉的成本支持全系统可扩展的缓存一致性。在软件层面,系统级运行时利用该硬件来实现动态数据分类、放置、迁移和复制机制,最大限度地提高系统性能和效率,同时透明地对延迟关键型工作负载实施严格的 QoS 保证。到应用程序。与现有的带宽划分方法相结合,这些技术将通过控制所有片上共享资源(缓存、片上网络和内存控制器)来实施全系统 QoS 保证。此外,作为该项目一部分开发的基础设施和基准将公开发布,允许其他研究人员以这项工作的成果为基础,并支持大规模并行计算机架构中的课程项目和其他教育活动的开发。在麻省理工学院和其他地方。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Sanchez Martin其他文献

Daniel Sanchez Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Sanchez Martin', 18)}}的其他基金

Collaborative Research: PPoSS: LARGE: A Full-Stack Architecture for Sparse Computation
协作研究:PPoSS:LARGE:稀疏计算的全栈架构
  • 批准号:
    2217099
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Small: A Scalable Architecture for Ubiquitous Parallelism
SHF:小型:无处不在的并行性的可扩展架构
  • 批准号:
    1814969
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: A Hardware and Software Architecture for Data-Centric Parallel Computing
职业:以数据为中心的并行计算的硬件和软件架构
  • 批准号:
    1452994
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243052
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
  • 批准号:
    2401274
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243053
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了