Collaborative Research: Biomimetic Nanostructured Materials Based on Synthetic Spider Silk

合作研究:基于合成蜘蛛丝的仿生纳米结构材料

基本信息

  • 批准号:
    1310387
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

ID: MPS/DMR/BMAT(7623) 1310534 PI: Dzenis, Yuris ORG: University of NebraskaID: MPS/DMR/BMAT(7623) 1310387 PI: Lewis, Randolph ORG: Utah State UniversityTitle: Collaborative Research: Biomimetic Nanostructured Materials Based on Synthetic Spider SilkTechnical Part: Spider silks exhibit excellent strength, stiffness, and toughness simultaneously, a feat unachievable in most synthetic structural materials. However, natural silks cannot be harvested in quantities necessary for applications. Recombinant silk proteins closely mimicking the natural silk sequences have been synthesized in processes that can be further scaled up. However, fibers made from these proteins, while they are tough, are significantly inferior to natural fibers in the important metrics of strength. Much has been learned in recent years about the effects of various protein motifs on mechanical properties. Despite a very intensive effort in many laboratories, reproduction of the native fiber spinning process resulting in highly structured strong and tough fiber has so far proven elusive. The objective of this project is to develop and study novel nanostructured synthetic spider silk fiber based on continuous silk nanofilaments. Rather than trying to replicate the elusive exact conditions of the delicate native structuring process via self-assembly, biomimetic hierarchical silk fibers will be built using a recently optimized top-down nanomanufacturing technique. The technique is capable of producing highly aligned and dense nanofilamentary fibers with simultaneously improved strength, modulus, and strain at failure, compared to the solid microfibers from the same polymer. Preliminary studies show impressive properties for individual ultrafine nanofibers electrospun from two different synthetic spider silk proteins. These properties will be further improved by precision-manufactured microscopic nanofilamentary fibers. These fibers will be analyzed using solid state NMR, FTIR, and X-ray diffraction to determine the structural elements responsible for the best materials properties. These biomimetic constructs, combined with the original potential of spider silk proteins can lead to revolutionary new fibers that can be produced in industrial quantities. Expectations are to develop synthetic spider silk fibers exceeding the mechanical performance of the natural fibers, thus improving on nature's best structural material. This research will build on the complimentary interdisciplinary expertise and several recent breakthroughs in the laboratories of the co-PIs.Non-Technical Part: The extreme flexibility of the electro-spinning process and recently developed precision methods of process control, based on sophisticated multi-physics process modeling, open up near unlimited possibilities for the development of new high-performance nanostructured fibers. These next generation ultrastrong/tough fibers promise broad applications. Both research groups have proven records of commercializing research results including advanced supercomposites with nanofiber reinforced interfaces for military applications and spider silk fibers for tendon repair materials, sporting goods, and military protective materials. The two Universities will partner strategically to further develop and commercialize the unique ultrahigh-performance nanoflamentary synthetic spider silk fibers developed under this grant. Two PhD students with different backgrounds will interact and work closely with each other and the co-PIs. At least 5 undergraduates from both universities will also be involved with this research program. In addition senior design project groups will be joining the research to test various applications of these fibers. The proposed research covers biochemistry, mechanics, materials science, and nanomanufacturing and will provide students a unique interdisciplinary experience. Undergraduate students will present their results at Undergraduate Research Day. Both laboratories will be involved with their universities' efforts to recruit underrepresented groups, particularly providing laboratory tours and hands on efforts for high school students. A new nanostructured silk design, fabrication, and characterization testbed will be developed as part of the UNL Nanofiber Core Facility. This testbed will be used for demonstrations during frequent visits to our laboratories of fellow researchers, students, and members of the public in classes, and for research. This facility testbed will also serve as a vehicle for dissemination of new research results. Previous research from both groups has been featured in the popular press as well as several television programs both in the U.S. and in several other countries. Of specific note is that this research was featured on NSF's Science Nation program as well as Nova's "Making Stuff"and the Discovery, History and Disney Channels. The two groups will continue to jointly popularize this exciting research performed at the two universities.
ID: MPS/DMR/BMAT(7623) 1310534 PI: Dzenis, Yuris ORG: 内布拉斯加大学 ID: MPS/DMR/BMAT(7623) 1310387 PI: Lewis, Randolph ORG: 犹他州立大学 标题: 合作研究:基于仿生纳米结构材料合成蜘蛛丝技术部分:蜘蛛丝表现出优异的强度,同时具有刚度和韧性,这是大多数合成结构材料无法实现的壮举。 然而,天然丝的收获量无法达到应用所需的数量。 紧密模仿天然丝序列的重组丝蛋白已经在可以进一步扩大规模的过程中合成。 然而,由这些蛋白质制成的纤维虽然坚韧,但在重要的强度指标上明显逊色于天然纤维。 近年来,人们对各种蛋白质基序对机械性能的影响有了很多了解。 尽管许多实验室付出了巨大的努力,但迄今为止,仍难以复制原生纤维纺丝工艺,生产出高度结构化的强韧纤维。 该项目的目标是开发和研究基于连续丝纳米丝的新型纳米结构合成蜘蛛丝纤维。 仿生分层丝纤维将使用最近优化的自上而下的纳米制造技术来构建,而不是试图通过自组装来复制微妙的天然结构化过程的难以捉摸的精确条件。 与相同聚合物的固体微纤维相比,该技术能够生产高度排列和致密的纳米丝纤维,同时提高强度、模量和失效应变。 初步研究表明,由两种不同的合成蜘蛛丝蛋白电纺而成的单个超细纳米纤维具有令人印象深刻的特性。 这些性能将通过精密制造的微观纳米丝纤维得到进一步改善。这些纤维将使用固态 NMR、FTIR 和 X 射线衍射进行分析,以确定实现最佳材料性能的结构元素。 这些仿生结构与蜘蛛丝蛋白的原始潜力相结合,可以产生革命性的新型纤维,并可以工业量生产。 人们期望开发出机械性能超过天然纤维的合成蜘蛛丝纤维,从而改进自然界最好的结构材料。这项研究将建立在互补的跨学科专业知识和联合PI实验室最近取得的几项突破的基础上。物理过程建模,为开发新型高性能纳米结构纤维开辟了近乎无限的可能性。 这些下一代超强/坚韧纤维有望获得广泛的应用。 两个研究小组都拥有将研究成果商业化的记录,包括用于军事应用的具有纳米纤维增强界面的先进超级复合材料以及用于肌腱修复材料、体育用品和军事防护材料的蜘蛛丝纤维。 两所大学将进行战略合作,进一步开发和商业化在这笔赠款下开发的独特的超高性能纳米纤维合成蜘蛛丝纤维。 两名具有不同背景的博士生将与彼此以及联合 PI 进行互动和密切合作。 两所大学至少有 5 名本科生也将参与该研究项目。 此外,高级设计项目组将加入研究以测试这些纤维的各种应用。 拟议的研究涵盖生物化学、力学、材料科学和纳米制造,将为学生提供独特的跨学科体验。 本科生将在本科生研究日展示他们的成果。 这两个实验室都将参与其大学招募代表性不足群体的工作,特别是为高中生提供实验室参观和实践活动。 作为 UNL 纳米纤维核心设施的一部分,将开发一个新的纳米结构丝设计、制造和表征测试台。 该测试平台将用于在课堂上研究人员、学生和公众频繁访问我们的实验室时进行演示以及研究。 该设施试验台还将作为传播新研究成果的工具。 这两个小组之前的研究已在美国和其他几个国家的大众媒体以及一些电视节目中进行过专题报道。 特别值得注意的是,这项研究在 NSF 的 Science Nation 计划以及 Nova 的“Making Stuff”以及 Discovery、History 和 Disney 频道中得到了专题报道。 两个小组将继续共同推广在两所大学进行的这项激动人心的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Randolph Lewis其他文献

Resistance to Theory: American Studies and the Challenge of Cultural Studies
对理论的抵抗:美国研究与文化研究的挑战
Emile de Antonio: Radical Filmmaker in Cold War America
埃米尔·德·安东尼奥:冷战时期美国的激进电影制作人
  • DOI:
    10.5860/choice.38-4949
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Randolph Lewis
  • 通讯作者:
    Randolph Lewis

Randolph Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Randolph Lewis', 18)}}的其他基金

PFI: BIC Developing the Potential of Spider Silk for the Marketplace
PFI:BIC 开发蜘蛛丝的市场潜力
  • 批准号:
    1318194
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF EPSCoR Workshop: Successful Management Strategies
NSF EPSCoR 研讨会:成功的管理策略
  • 批准号:
    0330982
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Spider Silk Proteins
NIRT:蜘蛛丝蛋白
  • 批准号:
    0304494
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Tubuliform Spider Silk Proteins
管状蜘蛛丝蛋白
  • 批准号:
    0315601
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Wyoming NSF EPSCoR: Science and Engineering in Harsh Environments
怀俄明州 NSF EPSCoR:恶劣环境中的科学与工程
  • 批准号:
    9983278
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Sequence Variations in Spider Dragline Silk Proteins
蜘蛛拉丝蛋白的序列变异
  • 批准号:
    9806999
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Wyoming EPSCoR Improvement Program
怀俄明州 EPSCoR 改进计划
  • 批准号:
    9550477
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
The 1995 National EPSCoR Conference
1995年全国EPSCoR会议
  • 批准号:
    9553642
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Wyoming EPSCoR ADP Infrastructure Proposal
怀俄明州 EPSCoR ADP 基础设施提案
  • 批准号:
    9108774
  • 财政年份:
    1992
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Proenkephalin Processing (Neurobiology)
美法合作研究:脑啡肽原加工(神经生物学)
  • 批准号:
    8613040
  • 财政年份:
    1987
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于仿生学视角的蛋黄中铁的转运、吸收分子机制研究
  • 批准号:
    32301979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
手性植物器官的生物力学与仿生学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于仿生学视角的蛋清(Ca2+)-EEWNPs螯合及促钙吸收机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
叩甲科爆发式弹跳运动的功能形态学及仿生学研究
  • 批准号:
    32270483
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于仿生学非线性超材料点阵夹芯结构振动与噪声控制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Predicting the Mechanical Properties of Biomimetic Apatite Crystals Due to Co and Cr Ion Substitutions
合作研究:预测因 Co 和 Cr 离子取代而产生的仿生磷灰石晶体的机械性能
  • 批准号:
    2323500
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Predicting the Mechanical Properties of Biomimetic Apatite Crystals Due to Co and Cr Ion Substitutions
合作研究:预测因 Co 和 Cr 离子取代而产生的仿生磷灰石晶体的机械性能
  • 批准号:
    2323499
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Computational Examination of Biomimetic Peptides Acting as Anti-freeze Molecules
合作研究:仿生肽作为抗冻分子的实验和计算检验
  • 批准号:
    2203527
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了