PFI: BIC- Visible-Light Semiconductor Nanolithography

PFI:BIC-可见光半导体纳米光刻

基本信息

  • 批准号:
    1318211
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-15 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This Partnerships for Innovation: Building Innovation Capacity project from the University of Maryland, College Park, promotes the development of Resolution Augmentation through Photo-Induced Deactivation (RAPID) into a viable commercial strategy for semiconductor nanolithography. In conventional photolithography, a single wavelength (color) of light is used to expose an imageable material called a photoresist, and finer features are created by using light with a shorter wavelength. RAPID represents a new approach to photolithography in which one color of light exposes a photoresist causing a desired photoreaction that ultimately results in a developed image of a semiconductor circuit and a second color of light inhibits that exposure. This technique has been demonstrated to be able to create features that are far smaller than the wavelength of light employed. However, the underlying mechanisms of initiation and deactivation in RAPID photoresists are still poorly understood. The proposed research will elucidate the photochemistry and photophysics of RAPID and will provide the knowledge necessary to create RAPID photoresists that are suitable for the semiconductor industry. The ultimate goal of the proposed research is to create photoresists that are capable of creating features of 10 nm or less with a spacing of 20 nm or less, all using visible light.The broader impacts of this research are far reaching. The continued progress in increasing the number of transistors that can be fit into a given space on an integrated circuit, which is embodied by Moore's Law, has been a major technological and economic driver over the past five decades. However, current approaches to improving the resolution of semiconductor nanolithography involve the use of radiation or charged particles with ever shorter wavelengths, which goes hand in hand with ever-increasing technological challenges and cost. These approaches have also reached road blocks that may prove insurmountable. The ability to perform semiconductor nanolithography using visible light, which is inexpensive to generate, propagate and manipulate, could be a game changer for the semiconductor industry and could give a major boost to U.S. competitiveness in this field. However, RAPID is a disruptive technology that is vastly different from the approaches currently being pursued in the industry and requires more development before it will be given serious consideration as an alternative to these approaches. The goal of the proposed research is thus to develop RAPID materials to a state in which they are compatible with the needs of the semiconductor industry, so that the industry can further transition them from the research laboratory to the factory. The proposed research will increase the viability of both participating small businesses, Period Structures, Inc. (PSI) and Lithoguru. The proposed work will position these businesses to play a leading role in the transition of RAPID into semiconductor nanolithography and other markets. PSI will be at the forefront of tool design and development for RAPID, while Lithoguru will have developed all of the simulation tools essential for modeling virtually any industrial implementation of RAPID. The graduate students who will perform the proposed research will work hand-in-hand with PSI and Lithoguru, gaining invaluable experience not just in small business and its culture but also in moving a research-laboratory discovery toward a marketable technology. By participating in this project, they will develop broad skill sets that will benefit their careers and will put them in a unique position to facilitate the ensuing transition of RAPID into the foundry or to develop tools and materials with further advanced capabilities.Partners at the inception of the project are the University of Maryland, College Park and two small, technology-based businesses: Periodic Structures, Inc. (Los Gatos, CA, Austin, TX and Albuquerque, NM) and Lithoguru (Austin, TX).
这种创新合作伙伴关系:马里兰州大学公园的建立创新能力项目,通过照片引起的停用(Rapid)为可行的半导体纳米造影术的可行商业策略促进了扩大扩展的发展。在常规的光刻学中,单个波长(颜色)用于暴露一种称为光震的可成像材料,并且通过使用较短波长的光创建更精细的特征。 Rapid代表了一种新的光刻方法,其中一种颜色暴露了光蛋白天,导致所需的光电反应最终导致了半导体电路的发达图像,而第二颜色的光抑制了这种暴露。该技术已被证明能够创建远小于使用的光波长的功能。然而,快速光震毒师的起始和失活的潜在机制仍然很少了解。拟议的研究将阐明快速的光化学和光体物理学,并将提供必要的知识,以创建适合半导体行业的快速光震鼠。拟议的研究的最终目标是创建能够以20 nm或更少的间距创建10 nm或更少的功能的光吸师,所有这些功能都使用可见光。这项研究的更广泛影响已达到远处。在过去的五十年中,在摩尔法律所体现的综合赛道上可以融入给定空间的晶体管数量的持续进展。但是,当前改善半导体纳米光刻分辨率的方法涉及使用辐射或带电的粒子,其波长越短,这与不断增加的技术挑战和成本息息相关。这些方法也已经到达了可能无法克服的路障。使用可见光来执行半导体纳米光刻的能力,可见光的生成,繁殖和操纵很便宜,这可能是半导体行业的游戏规则改变者,并且可以使美国在这一领域的竞争力有了重大的提高。但是,Rapid是一项破坏性技术,它与行业中当前正在采用的方法大不相同,并且需要进行更多的发展,然后才能认真考虑这些方法作为这些方法的替代方法。因此,拟议的研究的目的是将快速的材料开发到与半导体行业需求兼容的状态,以便该行业可以将其从研究实验室进一步转变为工厂。拟议的研究将提高参与小型企业,时期结构,Inc。(PSI)和Lithoguru的生存能力。拟议的工作将使这些业务在快速向半导体纳米光刻和其他市场的过渡中发挥领导作用。 PSI将处于快速工具设计和开发的最前沿,而Lithoguru将开发出几乎任何行业实施快速实施的所有仿真工具。将进行拟议的研究的研究生将与PSI和Lithoguru携手合作,不仅在小型企业及其文化中获得了无价的经验,而且还可以将研究规模的发现转移到可销售的技术中。 By participating in this project, they will develop broad skill sets that will benefit their careers and will put them in a unique position to facilitate the ensuing transition of RAPID into the foundry or to develop tools and materials with further advanced capabilities.Partners at the inception of the project are the University of Maryland, College Park and two small, technology-based businesses: Periodic Structures, Inc. (Los Gatos, CA, Austin, TX and Albuquerque, NM) and Lithoguru(德克萨斯州奥斯汀)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Fourkas其他文献

Physical Control of Intracellular Waves with Nanotopography and Electric Fields
  • DOI:
    10.1016/j.bpj.2020.11.906
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Qixin Yang;Matt Hourwitz;Leonard Campanello;Peter N. Devreotes;John Fourkas;Wolfgang Losert
  • 通讯作者:
    Wolfgang Losert
Cell Shape Dynamics: from Waves to Motion
  • DOI:
    10.1016/j.bpj.2010.12.3007
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Wolfgang Losert;Meghan Driscoll;Colin McCann;John Fourkas;Carole Parent
  • 通讯作者:
    Carole Parent

John Fourkas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Fourkas', 18)}}的其他基金

New Nonlinear Optical Approaches for Probing the Microscopic Nature of Liquids and Solutions
用于探测液体和溶液微观性质的新非线性光学方法
  • 批准号:
    1800491
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Nonlinear Optical and Simulation Studies of Perturbed Liquids
扰动液体的非线性光学和模拟研究
  • 批准号:
    1362215
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SNM: Three-Color Photolithography for Scalable, Large-Area, Low-Cost Nanomanufacturing
SNM:用于可扩展、大面积、低成本纳米制造的三色光刻
  • 批准号:
    1449309
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
EAGER: Development of parametrically-amplified vibrational sum-frequency generation
EAGER:参数放大振动和频生成的开发
  • 批准号:
    0969247
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Probing Microscopic Structure and Dynamics in Complex Systems
探测复杂系统中的微观结构和动力学
  • 批准号:
    0608045
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CRC: Molecular-Level Structure and Dynamics at Solid-Liquid Interfaces
CRC:固液界面的分子级结构和动力学
  • 批准号:
    0628178
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Nonlinear-Optical Spectroscopy and Microscopy of Confined Liquids
受限液体的非线性光学光谱学和显微镜学
  • 批准号:
    0547189
  • 财政年份:
    2005
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Nonlinear-Optical Spectroscopy and Microscopy of Confined Liquids
受限液体的非线性光学光谱学和显微镜学
  • 批准号:
    0314020
  • 财政年份:
    2003
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Experimental and Theoretical Studies of Microscopic Dynamics in Liquids
液体微观动力学的实验和理论研究
  • 批准号:
    0073228
  • 财政年份:
    2000
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
XYZ on a Chip: Development and Fabrication of Three-Dimensional Microdevices
片上 XYZ:三维微器件的开发和制造
  • 批准号:
    0088438
  • 财政年份:
    2000
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

回音壁微腔中的光学BIC模式及应用
  • 批准号:
    12334016
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
太赫兹准BIC超表面用于食用植物油中农药残留检测的研究
  • 批准号:
    32371983
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于准BIC的全介质超表面的局域电场增强及其应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于准BIC的全介质超表面的局域电场增强及其应用研究
  • 批准号:
    62105282
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
AIC, BIC及Cp准则在大维架构下的强相合性研究
  • 批准号:
    11771073
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

トロイダル双極子とBICの融合による近赤外光完全吸収シリコンメタ表面の実現
通过环形偶极子与BIC融合实现完全吸收近红外光的硅超表面
  • 批准号:
    24KJ1687
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
  • 批准号:
    10931181
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
BIC
商业银行
  • 批准号:
    640144
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
Biomolecular sensing in all-dielectric metasurfaces with collective resonances
具有集体共振的全介电超表面中的生物分子传感
  • 批准号:
    22K20496
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Dynamique des populations de botryches (Botrychium spp) au parc national du Bic
比克国家公园的贵腐菌 (Botrychium spp) 种群动态
  • 批准号:
    564767-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了