Analytic Problems in the Physics of Fluids, Gravitation and Conformal Geometry

流体物理、引力和共形几何中的解析问题

基本信息

  • 批准号:
    1305705
  • 负责人:
  • 金额:
    $ 9.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This award will address important questions regarding the mathematical foundations of physical theories: solutions to the Euler equations in Fluid Dynamics; the Cauchy problem for relativistic dissipative fluids; the Penrose inequality in General Relativity; and effective potentials in String Theory. It also addresses the issue of compactness of solutions to the Yamabe problem on manifolds with non-umbilic boundary. Understanding the convergence of solutions of the free boundary Euler equations to solutions of the standard Euler equations in a fixed domain will provide mathematical justification to several approximating schemes used in the Applied Sciences. It may also give useful hints on how to improve such schemes. There have been important developments in Astrophysics and Cosmology which deal with relativistic viscous fluids. It is therefore paramount to give a proper mathematical treatment of the Cauchy problem describing these situations. The Penrose inequality is a longstanding open problem in the physics of gravitation. Proving it in different situations is an important step towards establishing the Cosmic Censorship Conjecture, which in turn can be viewed as a test for the consistency of General Relativity. Effective potentials are among the most promising approaches to construct realistic models in String Theory. Finally, the study of compactness of solutions to the Yamabe problem on manifolds with non-umbilic boundary is an important extension of the results known so far. All these problems are extensions of previous work done by the PI and collaborators. Broader impact: All problems described in this project will certainly lead to new interactions between Physics and Mathematics, as well as the development of new techniques which will undoubtedly have applications to other problems in Physics, Analysis and Geometry. The techniques developed to study the Cauchy problem in relativistic dissipative fluids will likely be applicable to other problems in the field of Partial Differential Equations. The proof of compactness of solutions to the Yamabe problem for manifolds with non-umbilic boundary will require an analogue of the Weyl Vanishing Theorem for the umbilicity tensor. A recent proof of the charged Penrose inequality given by the PI and M. A. Khuri relies on the introduction of a new quasi-local mass tailored to electrically charged initial data sets. Its generalization can potentially bring new insights to the broader issue of mass in General Relativity. The last decades have seen an extremely fruitful exchange between Geometry and String Theory, and the study of effective potentials is certain to provide new avenues for this interaction. The ideas of this project will also reach an audience outside the PI immediate field of expertise through their dissemination via topics courses, seminars etc. Finally, one hopes that some of the outcomes of this project will eventually help the task of building an ever more scientifically educated society. In the age of the Large Hadron Collider, where popular books and TV shows present the general public with concepts like black holes, giant stars and extra dimensions, keeping track of the mathematical and logical solidity of our physical theories can help citizens to decide what to take as well-established science versus ideas which have yet to meet the standards of academic rigor.
该奖项将解决有关物理理论数学基础的重要问题:流体动力学中欧拉方程的解;相对论耗散流体的柯西问题;广义相对论中的彭罗斯不等式;以及弦理论中的有效势。它还解决了非脐带边界流形上 Yamabe 问题解的紧致性问题。了解固定域中自由边界欧拉方程解与标准欧拉方程解的收敛性将为应用科学中使用的几种近似方案提供数学论证。它还可以提供有关如何改进此类方案的有用提示。处理相对论粘性流体的天体物理学和宇宙学取得了重要进展。因此,对描述这些情况的柯西问题进行适当的数学处理至关重要。彭罗斯不等式是引力物理学中长期存在的悬而未决的问题。在不同情况下证明这一点是建立宇宙审查猜想的重要一步,这反过来又可以被视为对广义相对论一致性的检验。有效势是弦理论中构建现实模型最有前途的方法之一。最后,非脐边界流形上 Yamabe 问题解的紧致性研究是迄今为止已知结果的重要扩展。所有这些问题都是 PI 和合作者之前所做工作的延伸。更广泛的影响:该项目中描述的所有问题肯定会导致物理和数学之间的新相互作用,以及新技术的发展,这无疑将应用于物理、分析和几何中的其他问题。为研究相对论耗散流体中的柯西问题而开发的技术可能适用于偏微分方程领域的其他问题。非脐带边界流形 Yamabe 问题解的紧致性证明需要脐带张量的韦尔消失定理的类似物。 PI 和 M. A. Khuri 给出的带电彭罗斯不等式的最新证明依赖于引入针对带电初始数据集量身定制的新准局部质量。它的推广有可能为广义相对论中更广泛的质量问题带来新的见解。在过去的几十年里,几何学和弦理论之间进行了极其富有成效的交流,有效势的研究肯定会为这种相互作用提供新的途径。该项目的想法也将通过主题课程、研讨会等方式传播给 PI 直接专业领域之外的受众。最后,人们希望该项目的一些成果最终将帮助完成建立更加科学的受过教育的社会。在大型强子对撞机时代,流行书籍和电视节目向公众展示黑洞、巨星和额外维度等概念,跟踪物理理论的数学和逻辑可靠性可以帮助公民决定要做什么。接受成熟的科学与尚未达到学术严谨标准的思想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcelo Disconzi其他文献

Marcelo Disconzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcelo Disconzi', 18)}}的其他基金

Workshop on Geometry and Analysis of Fluid Flows
流体流动几何与分析研讨会
  • 批准号:
    2230558
  • 财政年份:
    2022
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
Mathematical Questions in Relativistic Fluids
相对论流体中的数学问题
  • 批准号:
    2107701
  • 财政年份:
    2021
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
Mathematical Questions in Classical and Relativistic Fluids and Applications
经典和相对论流体中的数学问题及其应用
  • 批准号:
    1812826
  • 财政年份:
    2018
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
Shanks Workshop on Geometric Analysis
Shanks 几何分析研讨会
  • 批准号:
    1610645
  • 财政年份:
    2016
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
Shanks Workshop on Mathematical Aspects of Fluid Dynamics
Shanks 流体动力学数学方面研讨会
  • 批准号:
    1464767
  • 财政年份:
    2014
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant

相似国自然基金

物理引导的机器学习求解频率域声波正反问题研究
  • 批准号:
    42374141
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
数学物理问题中正则化模型的不确定性量化分析
  • 批准号:
    12371423
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
IUTAM研讨会-先进材料和结构中的多物理场耦合力学问题研讨会
  • 批准号:
    12342008
  • 批准年份:
    2023
  • 资助金额:
    8 万元
  • 项目类别:
    专项基金项目
高超声速飞行器发汗冷却温度振荡问题的多尺度多物理场耦合机理研究
  • 批准号:
    12302337
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
信息物理系统抗网络攻击的鲁棒活性监控问题研究
  • 批准号:
    62302448
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

LEAPS-MPS: Computational Methods for Many-Physics Problems Involving Multi-Material Flows
LEAPS-MPS:涉及多材料流的许多物理问题的计算方法
  • 批准号:
    2302080
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
  • 批准号:
    2313033
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
Programs on Critical Problems in Physics, Astrophysics and Biophysics at the Aspen Center for Physics
阿斯彭物理中心物理学、天体物理学和生物物理学关键问题项目
  • 批准号:
    2210452
  • 财政年份:
    2022
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Continuing Grant
Problems in Extremal Combinatorics with Applications to Statistical Physics
极值组合问题及其在统计物理中的应用
  • 批准号:
    574977-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了