Two phase flows in karstic geometry

岩溶几何中的两相流

基本信息

  • 批准号:
    1312701
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

We propose to study two phase flow in karstic geometry utilizing a hierarchical family of physically motivated diffuse interface (phase field) models. These models embody several challenges: moving interface between two types of fluids which leads to strong nonlinearity of the resulting models, and different physics in different parts of the physical domain which leads to the coupling of subsystems of different types. Although these two difficult issues have been studied before in separate contexts, the physical need of two phase fluid flow in karstic geometry requires us to investigate the two issues in a coupled fashion. This is a challenge that has not been addressed so far. The PI and collaborators plan to investigate the models from several different angles. Firstly, we will investigate the mathematical well-posedeness of models. Secondly, we will study the sharp interface limit. Thirdly, we will design and implement accurate and efficient numerical methods for the models so that the results can be compared to experimental results. These are highly non-trivial tasks due to the highly nonlinear nature of the coupled systems, and the disparity of physical and mathematical mechanism in the porous media and in the conduit. The sharp interface limit is a highly nonlinear singular perturbation problem which is known to be a challenge. We will combine tools from partial differential equations, functional analysis, asymptotic analysis, numerical analysis and computation, and laboratory experiments to investigate these problems.Geometric configurations that contain both conduit (or vug) and porous media is termed karstic geometry. It is known that the study of multiphase flow in karstic geometry is of great importance in many applications such as groundwater study, fuel cell technology, petroleum engineering and carbon-dioxide sequestration. The successful completion of the investigation on the validity of the models proposed here will help us better understand several important two fluid phenomena in karstic geometry. We also believe that the methodologies to be developed may be expanded to investigate more complex models that involve phase transition, and large density ratio. The better understanding of these important problems could lead to better engineering processes and better science based environmental policies.
我们建议利用出色动机的分散界面(相位场)模型的分层家族研究术中的两相流。这些模型体现了几个挑战:两种类型的流体之间移动界面,从而导致了所得模型的强烈非线性,以及物理域的不同部分的不同物理,从而导致不同类型的子系统的耦合。尽管这两个困难的问题之前已经在不同的环境中进行了研究,但在喀斯坦几何形状中对两个相流量流的物理需求要求我们以耦合方式调查这两个问题。到目前为止,这是一个尚未解决的挑战。 PI和合作者计划从几个不同角度研究模型。首先,我们将研究模型的数学良好性。其次,我们将研究尖锐的界面限制。第三,我们将为模型设计和实施准确有效的数值方法,以便可以将结果与实验结果进行比较。由于耦合系统的高度非线性性质,以及多孔介质和导管中物理和数学机制的差异,这些都是高度非平凡的任务。尖锐的界面限制是一个高度非线性的奇异扰动问题,已知是一个挑战。我们将结合部分微分方程,功能分析,渐近分析,数值分析和计算以及实验室实验来研究这些问题。众所周知,在诸如地下水研究,燃料电池技术,石油工程和碳 - 二氧化碳固结化等许多应用中,术中多相流的研究非常重要。在此处提出的模型的有效性的成功完成将有助于我们更好地理解Karstic几何形状中几种重要的两种流体现象。我们还认为,可以扩展要开发的方法,以研究涉及相变和较大密度比的更复杂的模型。对这些重要问题的更好理解可能会导致更好的工程过程和更好的基于科学的环境政策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Wang其他文献

Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system
Cahn-Hilliard-Stokes-Darcy 系统解耦数值格式的误差估计
  • DOI:
    10.1093/imanum/drab046
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Wenbin Chen;Daozhi Han;Xiaoming Wang;Shufen Wang;Yichao Zhang
  • 通讯作者:
    Yichao Zhang
Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization
  • DOI:
    10.1090/s0025-5718-09-02256-x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoming Wang
  • 通讯作者:
    Xiaoming Wang
Proxy multisignature scheme with (t, m) threshold shared verification
具有(t,m)阈值共享验证的代理多重签名方案
INDIAN OCEAN TSUNAMI ON 26 DECEMBER 2004: NUMERICAL MODELING OF INUNDATION IN THREE CITIES ON THE SOUTH COAST OF SRI LANKA
2004 年 12 月 26 日印度洋海啸:斯里兰卡南海岸三个城市洪水淹没的数值模拟
  • DOI:
    10.1142/s1793431108000293
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    J. J. Wijetunge;Xiaoming Wang;P. Liu
  • 通讯作者:
    P. Liu
Correlation for tubulent convection heat transfer in elliptical tubes by numerical simulations
通过数值模拟关联椭圆管中的管流对流换热

Xiaoming Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Wang', 18)}}的其他基金

Collaborative Research: Gateway to North America--the Great American Biotic Interchange (GABI) in Mexico and Origin of C4 Grassland
合作研究:北美门户——墨西哥大美洲生物交汇处(GABI)与C4草原起源
  • 批准号:
    1949742
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Some Mathematical Problems Associated with Hyporheic Flow
与潜流有关的一些数学问题
  • 批准号:
    1715504
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Critical Transitions Across the Phanerozoic: A Roundtable Workshop on Sino-US Collaborative Research on Major Events in the History of Life during the Past 600 Million Years
显生宙的关键转变:中美合作研究过去6亿年生命史上重大事件圆桌研讨会
  • 批准号:
    1332320
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Critical Transitions Across the Phanerozoic: A Roundtable Workshop on Sino-US Collaborative Research on Major Events in the History of Life during the Past 600 Million Years
显生宙的关键转变:中美合作研究过去6亿年生命史上重大事件圆桌研讨会
  • 批准号:
    1138908
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: High-resolution, multi-proxy Miocene-Pleistocene climate and environmental record from the high-elevation Zhada basin, SW Tibetan Plateau
合作研究:青藏高原西南部高海拔扎达盆地高分辨率、多代理中新世-更新世气候与环境记录
  • 批准号:
    1227212
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Quantifying long time statistical properties of a few fluid models
量化一些流体模型的长期统计特性
  • 批准号:
    1008852
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Late Cenozoic Vertebrate Paleontology and Paleoenvironments of the Tibetan Plateau (China)
合作研究:青藏高原晚新生代脊椎动物古生物学和古环境(中国)
  • 批准号:
    0958704
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
DISSERTATION RESEARCH: Evolution of craniodental function in Hyaenidae and Canidae
论文研究:鬣狗科和犬科动物颅齿功能的进化
  • 批准号:
    0909807
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Workshop on Neogene Mammalian Chronology of Asia, June 2009 in Beijing, China
亚洲新近纪哺乳动物年代学研讨会,2009 年 6 月在中国北京
  • 批准号:
    0924142
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: The Impact of Late Cenozoic Himalayan-Tibetan Uplift on C4 Plant Expansion, Climate and Mammalian Evolution in Northern China
合作研究:晚新生代喜马拉雅-西藏隆升对中国北方C4植物扩张、气候和哺乳动物进化的影响
  • 批准号:
    0716507
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

建筑风雪流相界自适应模型与分阶段准动态耦合分析理论
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
建筑风雪流相界自适应模型与分阶段准动态耦合分析理论
  • 批准号:
    52178506
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
大型钢铁企业能量流与制造流协同鲁棒优化方法研究
  • 批准号:
    61903293
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
矿渣型泥石流孕育阶段细粒输移-堵塞机理研究
  • 批准号:
    41907255
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
基于波动流理论的供应链质量控制研究
  • 批准号:
    71801049
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Functional improvement of mixing promotion in fluid equipment by elucidating the universal statistical law of two-phase turbulence
通过阐明两相湍流的普遍统计规律改进流体设备中的混合促进功能
  • 批准号:
    22H01403
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Wall wettability and fluid rheology effects on two-phase flows in microchannel
壁润湿性和流体流变学对微通道内两相流的影响
  • 批准号:
    22K03907
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simulation of surfactant-laden two-phase flow through porous materials for design of coalescer
模拟载有表面活性剂的两相流穿过多孔材料以设计聚结器
  • 批准号:
    22K04803
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hydrogel two-phase flows: hydrodynamics and applications
水凝胶两相流:流体动力学和应用
  • 批准号:
    RGPIN-2019-04162
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
On-demand emulsions from oscillatory two-phase shear flows
来自振荡两相剪切流的按需乳液
  • 批准号:
    EP/X023176/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了