Mean curvature flow, minimal surfaces and Ricci flow
平均曲率流、最小曲面和里奇流
基本信息
- 批准号:1311795
- 负责人:
- 金额:$ 15.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The three topics in the title of the project enjoy strong connections and analogies between them, which for some aspects are also directly useful in a rigorous setting. Thus, a large portion of the proposed project concerns the further extension of gluing techniques for solutions of the nonlinear partial differential equations of minimal surfaces and constant mean curvature surfaces, to study important existence and uniqueness questions for singularities and long time behavior of the two curvature flows. Such transplantation of techniques has already proven successful, also in the previous work of the P.I.Firstly, in the project the P.I. will, in collaboration with Prof. Nicos Kapouleas (at Brown University) and Dr. Stephen J. Kleene (at MIT), continue their joint work on gluing constructions for minimal surfaces and mean curvature flow singularities for surfaces in 3-manifolds, and applications to solitons in the curvature flows. Secondly, the PI will, in collaboration with Dr. Höskuldur P. Halldorsson, establish existence results for new types of long time solutions under mean curvature flow in Euclidean space. Thirdly, the P.I. will, alone or in collaboration with others, study time-dependent gluing constructions in mean curvature flow, and explore an analogous problem for 3-dimensional Ricci flow, which will further help guiding the on-going study of properties of this flow by many other researchers. Fourth, alone or in collaboration with others, initiate the study of gluing constructions for other nonlinear geometric PDEs. For example in relation to conformal geometry, complex geometry and constraints on Ricci curvature.Minimizing the area of an interface between two regions is a fundamental problem which arises in many scientific and engineering applications. Mean curvature flow, being defined as the fastest way to locally decrease the area of a given surface, is formulated as a partial differential equation, very similar in nature to that which governs the flow of heat in a material. While key foundational results are known, many of the basic questions remain unanswered. Already, many very striking applications, lauded by experts across the sciences, have in recent years followed from the study of these particular flows. Many more are expected to arise both within and outside of mathematics, such as in astronomy, to black holes and the large-scale structure of the universe, and in chemistry, to complex molecules. The proposal involves research problems at varying levels, and so there is rich opportunity and concrete plans to include as well undergraduate students as graduate students, postdoctoral and faculty researchers across institutions in the project. Given the manifest geometric and physically motivated nature of the material, the ideas and results of the project are also very suitable for an inspiring communication, visually and otherwise, to a broad audience.
该项目中的三个主题在它们之间享有强大的稳固,因此,支撑项目的很大一部分涉及粘合技术的进一步扩展,以延长最小表面的非线性部分偏微分方程和持续的均值曲率s技术的时间行为已经证明了P.I.首先的成功作品,在Brown University的P.I.在曲率流中的孤子中的奇异性,在曲率流中的应用结果。平均曲率流中的因子结构,用于3维RICCI流动,这将进一步指导许多其他研究人员,或与其他人合作,研究其他非线性几何PDE的胶合。 n与RICCI曲率上的保形几何形状,复杂的几何形状和约束。在两个区域之间,最大程度地介绍了界面的面积,是许多科学和工程应用中的基本问题。部分差分方程与控制材料中的热量相似,而关键的基础结果是不受欢迎的。有更多的流程。学生在项目中作为研究生的局面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fernando Marques其他文献
Submarine landslide hazard in the Sines Contourite Drift, SW Iberia: slope instability analysis under static and transient conditions
伊比利亚西南部 Sines Contourite Drift 的海底滑坡灾害:静态和瞬态条件下的斜坡失稳分析
- DOI:
10.1007/s11069-023-06340-z - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
M. Teixeira;Cristina Roque;R. Omira;Fernando Marques;Davide Gamboa;P. Terrinha;G. Ercilla;M. Yenes;A. Mena;David Casas - 通讯作者:
David Casas
Fernando Marques的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fernando Marques', 18)}}的其他基金
Geometry, Analysis, and Variational Methods
几何、分析和变分方法
- 批准号:
2105557 - 财政年份:2021
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Geometry, Analysis, and Variational Methods
几何、分析和变分方法
- 批准号:
1811840 - 财政年份:2018
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Geometry, analysis and variational methods
几何、分析和变分方法
- 批准号:
1509027 - 财政年份:2015
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Partial regularity and rigidity problems associated to geometric elliptic systems
与几何椭圆系统相关的部分正则性和刚性问题
- 批准号:
1104592 - 财政年份:2011
- 资助金额:
$ 15.79万 - 项目类别:
Standard Grant
相似国自然基金
负曲率度量的空间和Teichmuller空间的拓扑
- 批准号:12371070
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
曲率有下界的流形的几何与拓扑
- 批准号:12371049
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
小曲率半径叠交盾构隧道施工软土地层三维变形特性及控制措施研究
- 批准号:42307260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气-液界面耦合氢键的曲率分辨谱学特征
- 批准号:12304243
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光纤非线性干涉的量子增强光纤曲率传感研究
- 批准号:62305240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
- 批准号:
23K12992 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 15.79万 - 项目类别:
Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
- 批准号:
572922-2022 - 财政年份:2022
- 资助金额:
$ 15.79万 - 项目类别:
University Undergraduate Student Research Awards