RUI: Low-Lying Zeros of L-functions and Problems in Additive Number Theory

RUI:L 函数的低位零点和加法数论中的问题

基本信息

  • 批准号:
    1265673
  • 负责人:
  • 金额:
    $ 13.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The PI plans on studying several projects on zeros of L-functions, as well as problems in additive number theory. The main research concerns the behavior of zeros near the central point. While these zeros have been known to be related to arithmetic problems since Riemann, in the last few decades connections have been observed with high energy nuclear physics and random matrix theory (RMT) as well. Thus investigations in one of these topics can be fruitfully used in the others. The additive number theory problems have a similar flavor; many of them concern density of states as well as gaps between events. Similar techniques are used in the analysis here as in some of the number theory and random matrix theory investigations. Specifically, the PI proposes to study: (1) the n-level densities of low-lying zeros of GL(2) L-functions (including level 1 Maass forms and increasing the support for holomorphic cuspidal newforms by deriving alternatives to the Katz-Sarnak determinantal expansions that are more amenable for comparing number theory and random matrix theory), (2) the n-level densities of Dirichlet and number field L-functions (which involves exploring and extending our understanding of the finer properties of the distribution of certain classes of primes), (3) finding random matrix theory analogues to Rankin-Selberg convolutions (to extend the predictive ability of RMT), (4) additional consequences of the L-function Ratios Conjecture and other arithmetic conjectures, (5) the density of states and behavior of the eigenvalues of structured random matrix ensembles (with special emphasis on the resulting combinatorics, which is frequently related to other problems of interest), (6) generalized Zeckendorf decompositions and the gaps between summands, (7) generalized sum and difference sets (especially phase transitions from different models of randomness, behavior in subsets of highly structured sets, and results in non-abelian cases), and finally (8) Benford's law of digit bias.The central questions in this proposal involve studying how events are distributed in diverse systems, such as energy levels of heavy nuclei, prime numbers and zeros of L-functions, leading digits in sets of data, and summands in generalized Zeckendorf decompositions. Similar to the Central Limit Theorem, there seem to be a few universal spacing laws that govern these and other phenomena; thus studies in one of these topics can frequently provide useful insights in the others. Understanding these systems requires the development of tools and techniques in complex analysis, Fourier analysis, number theory and probability. Some of the projects have real world applications; for example, the IRS uses Benford?s law to locate corporate tax fraud. Many of these projects have components that are amenable to numerical experimentation; these and tractable special cases will be investigated with undergraduate research assistants. The PI will also continue his extensive work in math education. In addition to providing numerous mentoring opportunities to his students (such as arranging for them to referee for journals, write reviews for MathSciNet, write expository articles for journals, and co-organize AMS special sessions), the PI will also involve them with expanding his math riddles page (http://mathriddles.williams.edu/). This site is frequently one of the top hits when searching for math riddles, and is used in junior high and high schools around the world to excite students to mathematics.
PI 计划研究几个有关 L 函数零点的项目以及加性数论中的问题。主要研究涉及中心点附近零点的行为。虽然自黎曼以来,这些零就被认为与算术问题有关,但在过去的几十年里,人们也在高能核物理和随机矩阵理论 (RMT) 中观察到了它们之间的联系。因此,对这些主题之一的研究可以有效地应用于其他主题。加法数论问题也有类似的特点。其中许多涉及状态密度以及事件之间的差距。这里的分析中使用了与一些数论和随机矩阵理论研究中类似的技术。具体来说,PI 建议研究:(1) GL(2) L 函数的低零点的 n 级密度(包括 1 级 Maass 形式,并通过推导 Katz- 的替代方案来增加对全纯尖头新形式的支持) Sarnak 行列式展开式更适合比较数论和随机矩阵理论),(2) Dirichlet 和数域的 n 级密度L 函数(涉及探索和扩展我们对某些素数类别分布的更精细属性的理解),(3) 寻找与 Rankin-Selberg 卷积类似的随机矩阵理论(以扩展 RMT 的预测能力),(4 )L 函数比率猜想和其他算术猜想的附加结果,(5)结构化随机矩阵系综的特征值和状态密度(特别强调由此产生的组合,其中经常与其他感兴趣的问题相关),(6)广义泽肯多夫分解和被加数之间的间隙,(7)广义和集与差集(特别是来自不同随机性模型的相变,高度结构化集合子集中的行为以及结果)在非阿贝尔情况下),最后是(8)本福德数字偏差定律。该提案的核心问题涉及研究事件如何在不同系统中分布,例如重核的能级、素数和零L 函数、数据集中的前导数字以及广义 Zeckendorf 分解中的被加数。与中心极限定理类似,似乎存在一些普遍的间距定律来控制这些现象和其他现象;因此,对这些主题之一的研究经常可以为其他主题提供有用的见解。理解这些系统需要开发复分析、傅立叶分析、数论和概率方面的工具和技术。有些项目具有现实世界的应用;例如,美国国税局使用本福德定律来定位公司税务欺诈。其中许多项目都有适合进行数值实验的组件;这些和易于处理的特殊情况将由本科生研究助理进行调查。 PI 还将继续他在数学教育方面的广泛工作。除了为他的学生提供大量指导机会(例如安排他们为期刊审稿、为 MathSciNet 撰写评论、为期刊撰写说明性文章以及共同组织 AMS 特别会议)外,PI 还将让他们参与扩大他的学术生涯。数学谜语页面(http://mathriddles.williams.edu/)。该网站经常是搜索数学谜语时的热门网站之一,并被世界各地的初中和高中用来激发学生的数学兴趣。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Smoothing Singularities of elliptic orbital integrals on GL(n) and Beyond Endoscopy
GL(n) 和超越内窥镜上椭圆轨道积分的平滑奇异性
  • DOI:
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Gonzales, Oscar;Kwan, Chung H;Miller, Steven J;Van Peski, Roger;Wong, Tian A
  • 通讯作者:
    Wong, Tian A
One-level density for holomorphic cusp forms of arbitrary level
任意级全纯尖点形式的一级密度
  • DOI:
    10.1007/s40993-017-0091-9
  • 发表时间:
    2016-04-12
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Owen Barrett;Paul Burkhardt;Jonathan DeWitt;R. Dorward;Steven J. Miller
  • 通讯作者:
    Steven J. Miller
Dimensional Lower Bounds for Falconer type incidence and point configuration theorems
Falconer 型关联定理和点配置定理的维数下界
  • DOI:
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    DeWitt, Jonathan;Ford, Kevin;Goldstein, Eli;Miller, Steven J;Moreland, Gwyneth;Palsson, Eyvindur A;Senger, Steven
  • 通讯作者:
    Senger, Steven
Benford’s law and continuous dependent random variables
本福德定律和连续因随机变量
  • DOI:
    10.1016/j.aop.2017.11.013
  • 发表时间:
    2013-09-22
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Thealexa Becker;David Burt;Taylor C. Corcoran;Ale;er Greaves;er;Joseph R. Iafrate;Joy Jing;Steven J. Miller;Jaclyn D. Porfilio;Ryan Ronan;J. Samranvedhya;F. Strauch;Blaine Talbut
  • 通讯作者:
    Blaine Talbut
Optimal Point Sets determining few distinct triangles,
确定几个不同三角形的最佳点集,
  • DOI:
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Epstein, Alyssa;Lott, Adam;Miller, Steven J;Palsson, Eyvindur
  • 通讯作者:
    Palsson, Eyvindur
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Miller其他文献

Association of Neonatal Hypoglycemia With Academic Performance in Mid-Childhood.
新生儿低血糖与儿童中期学业成绩的关联。
  • DOI:
    10.1001/jama.2022.0992
  • 发表时间:
    2022-03-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Shah;Darren W T Dai;J. Alsweiler;Gavin T. L. Brown;J. Chase;G. Gamble;D. Harris;Peter J. Keegan;Samson Nivins;T. Wouldes;Benjamin Thompson;J. Turuwhenua;J. Harding;C. McKinlay;Heidi Feldman;W. Hay;Robert F Hess;Darrell Wilson;Jenny Rogers;Steven Miller;Eleanor Kennedy;Arijit Chakraborty;J. Knopp;T. Zhou;Jocelyn Ledger;S. Macdonald;Alecia McNeill;Coila Bevan;Nataliia Burakevych;Robyn May;Safayet Hossin;G. McKnight;Rashedul Hasan;Jessica Wilson
  • 通讯作者:
    Jessica Wilson
Test Characteristics of the Respiratory Syncytial Virus Enzyme-Linked Immunoabsorbent Assay in Febrile Infants?60 Days of Age
60日龄发热婴儿呼吸道合胞病毒酶联免疫吸附试验的检测特点
  • DOI:
    10.1177/000992280204100606
  • 发表时间:
    2002-07-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    P. Dayan;F. Ahmad;J. Urtecho;M. Novick;P. Dixon;D. Levine;Steven Miller
  • 通讯作者:
    Steven Miller
The Aquarius underwater laboratory : America's inner space station
水瓶座水下实验室:美国内部空间站
  • DOI:
    10.4031/mtsj.34.4.9
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Steven Miller;C. Cooper
  • 通讯作者:
    C. Cooper
Science-Media Interface
科学媒体接口
  • DOI:
    10.1177/1075547008324809
  • 发表时间:
    2008-12-01
  • 期刊:
  • 影响因子:
    9
  • 作者:
    H. P. Peters;D. Brossard;S. de Cheveigné;S. Dunwoody;M. Kallfass;Steven Miller;Shoji Tsuchida
  • 通讯作者:
    Shoji Tsuchida
Institutional Knowledge at Singapore Management University Towards Semantic Service Request of Web Service Composition
新加坡管理大学针对 Web 服务组合的语义服务请求的机构知识

Steven Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Miller', 18)}}的其他基金

REU Site: The Williams College SMALL REU program
REU 站点:威廉姆斯学院小型 REU 项目
  • 批准号:
    2241623
  • 财政年份:
    2023
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Militias and Paramilitaries in Militarized Interstate Conflicts
合作研究:州际军事冲突中的民兵和准军事部队
  • 批准号:
    2116693
  • 财政年份:
    2021
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
The Williams College SMALL REU Program
威廉姆斯学院小型 REU 项目
  • 批准号:
    1947438
  • 财政年份:
    2020
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Collaborative Research: What Do Leaders Want?: Collecting and Coding Issue Positions and Demands in the Militarized Interstate Dispute (MID) Data, 1816-2010
合作研究:领导人想要什么?:收集和编码军事化州际争端 (MID) 数据中的问题立场和需求,1816-2010 年
  • 批准号:
    1729138
  • 财政年份:
    2017
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
The Williams College SMALL REU Program
威廉姆斯学院小型 REU 项目
  • 批准号:
    1659037
  • 财政年份:
    2017
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
RUI: Additive Number Theory, Zeros of L-Functions, and Benford's Law
RUI:加法数论、L 函数的零点和本福德定律
  • 批准号:
    1561945
  • 财政年份:
    2016
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
REU Site: The Williams College SMALL REU program
REU 站点:威廉姆斯学院小型 REU 项目
  • 批准号:
    1347804
  • 财政年份:
    2014
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESERARCH: Symbiosis and Repercussions of Extreme Ecological Specificity
合作研究:极端生态特异性的共生和影响
  • 批准号:
    1050292
  • 财政年份:
    2011
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
RUI: Investigations of L-functions and Benford's Law
RUI:L 函数和本福德定律的研究
  • 批准号:
    0970067
  • 财政年份:
    2010
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Standard Grant
Comets as laboratories: observing and modelling cometary spectra
彗星作为实验室:观测和模拟彗星光谱
  • 批准号:
    ST/G00174X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Research Grant

相似国自然基金

面向低轨卫星通信的预变换极化编码传输机制研究
  • 批准号:
    62301185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低共熔溶剂与水二元体系从超浓电解液到稀水溶液转变过程中的界面结构及反应动力学研究
  • 批准号:
    22372140
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
低强度超声激励功能化纳米砷烯抗三阴性乳腺癌的药理学机制及可视化研究
  • 批准号:
    82304544
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于酸-碱共混策略制备兼具高固化效率与低熔点的耐高温芳腈基树脂的研究
  • 批准号:
    22375134
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“温度响应-印迹驱动”聚低共熔溶剂纸芯片对中药黄曲霉毒素的可视化检测研究
  • 批准号:
    82304719
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Extensions to the study of low lying zeros of L-functions.
L 函数低点零点研究的扩展。
  • 批准号:
    569475-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Low Lying Zeros of Hecke L-functions
Hecke L 函数的低位零点
  • 批准号:
    571883-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    University Undergraduate Student Research Awards
Low Lying Zeros of Hecke L-functions
Hecke L 函数的低位零点
  • 批准号:
    571883-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    University Undergraduate Student Research Awards
Extensions to the study of low lying zeros of L-functions.
L 函数低点零点研究的扩展。
  • 批准号:
    569475-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Investigation of the Low-Lying Nuclear Isomeric Transition in the A=229 Isotope of Thorium
钍A=229同位素低位核异构转变的研究
  • 批准号:
    2013011
  • 财政年份:
    2020
  • 资助金额:
    $ 13.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了