CAREER: Stimuli-Responsive Dynamic Macromolecular Assemblies

职业:刺激响应动态大分子组装

基本信息

  • 批准号:
    1265388
  • 负责人:
  • 金额:
    $ 19.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This research capitalizes on the robust nature of reversible bond formation between diols and boronic acids for the preparation and investigation of self-assembled and responsive macromolecular material. Two particular systems will be investigated: (1)stimuli-responsive block copolymer assemblies and (2)dynamic covalent self-assembled materials. In the first system, diblock copolymers with a permanently hydrophilic block (e.g.,poly(ethylene glycol) or polyacrylamide) and a responsibe boronic acid containing acrylamido or styrenic block will be prepared by combination of controlled radical polymerization and other efficient postpolymerization transformations. In the absence of diol and at pHpKa of the boronic acid moieties, the organoboron segments will be dehydrated and insoluble, leading to self-assembly of the amphiphilic block copolymers into micelles and vesicles. Introduction of diols will lead to a reduced pKa of the boronic acids, and the resulting anionic boronate ester formation will cause a solubility transition and aggregate disassembly. Investigations will elucidate the critical diol concentration, pH, and temperature necessary to induce aggregate dissociation, and insight will be gained into the kinetics governing assembly and sissociation. The second class of materials relies on boronic acid-diol esterification to construct covalent macromolecular architectures via self-asembly of (co)polymers with either terminal or pendant diol and boronic acid functionality. Molecular brushes, stars, and other branched chain topologies will be constructed via boronic or boronate ester formation in the bulk state and in organic or aqueous solutions. Hydrolysis of the boronate esters will lead to reversible dissociation of the topologically complex macromolecules into individual linear polymer components. Under the equilibrium conditions inherent to reversible covalent systems, introduction of a second diol-containing polymer that forms a more stable boronate ester complex will lead to an exchange of macromolecular building blocks. The selectivity requred for efficient exchange will be implemented by designing polymers with dramatically different complexation potentioals. Thus, after macromolecular dissociation, reconstruction in the presence of a competing equilibrium will result in exchange of polymer building blocks to yield a new materials. The ability to reshuffle constituents through assembly-disassembly will also be employed to induce dramatic architectural rearrangements in solution (e.g., brush to star transitions). This research seeks to redefine the traditional concept of stimuli-responsive polymers to include macromolecular constructs that change both their chemical functionality and overall chain topology in response to environmental stress.NON-TECHNICAL SUMMARY:By preparing nanoscale objects that undergo rupture and reconstruction when exposed to changes in their local environment, fundamental insight can be gained into many of the mechanisms governing the controlled delivery of therapeutics and the behavior of new self-healing and adaptive materials. Because these studies require a diverse set of skills from materials science, chemistry, and engineering, students and junior scientists involved in this research are provided with a truly interdisciplinary set of skills that can enhance the workforce necessary to accelerate development of new advanced and sepciality materials market. An outreach component of the research is desinged to directly address many of the mandates of the American Competitiveness Initiative by establishing collaborations with local community colleges and independent K-12 school districts to facilitate the inclusion of underrepresented minority students for internship positions within the Department of Chemistry at Southern Methodist University.
技术摘要:本研究利用二醇和硼酸之间可逆键形成的稳健性质来制备和研究自组装和响应性大分子材料。 将研究两个特定系统:(1)刺激响应嵌段共聚物组件和(2)动态共价自组装材料。 在第一个系统中,具有永久亲水性嵌段(例如聚(乙二醇)或聚丙烯酰胺)和含有丙烯酰胺基或苯乙烯嵌段的响应硼酸的二嵌段共聚物将通过受控自由基聚合和其他有效的聚合后转化的组合来制备。 在不存在二醇且硼酸部分的pHpKa的情况下,有机硼链段将脱水且不溶,导致两亲性嵌段共聚物自组装成胶束和囊泡。 二醇的引入将导致硼酸的 pKa 降低,并且生成的阴离子硼酸酯的形成将导致溶解度转变和聚集体分解。 研究将阐明诱导聚集体解离所需的临界二醇浓度、pH 值和温度,并深入了解控制组装和离解的动力学。 第二类材料依靠硼酸-二醇酯化作用,通过具有末端或侧链二醇和硼酸官能团的(共)聚合物自组装来构建共价大分子结构。 分子刷、星形和其他支链拓扑结构将通过在本体状态和有机或水溶液中形成硼或硼酸酯来构建。 硼酸酯的水解将导致拓扑复杂的大分子可逆解离成单独的线性聚合物组分。 在可逆共价体系固有的平衡条件下,引入形成更稳定的硼酸酯复合物的第二种含二醇聚合物将导致大分子结构单元的交换。 有效交换所需的选择性将通过设计具有显着不同络合电位的聚合物来实现。 因此,大分子解离后,在竞争平衡存在的情况下重建将导致聚合物结构单元的交换,从而产生新材料。 通过组装-拆卸重新洗牌成分的能力也将用于在解决方案中引起戏剧性的架构重新排列(例如,刷状到星状的转变)。 这项研究旨在重新定义刺激响应聚合物的传统概念,包括改变其化学功能和整体链拓扑结构以响应环境压力的大分子结构。非技术摘要:通过制备纳米级物体,当暴露于环境压力时,该物体会发生破裂和重建。通过了解当地环境的变化,可以获得对许多控制治疗药物的控制传递的机制以及新的自愈和适应性材料的行为的基本了解。 由于这些研究需要材料科学、化学和工程学等多种技能,因此参与这项研究的学生和初级科学家将获得真正的跨学科技能,可以增强加速新型先进和特种材料开发所需的劳动力。市场。 该研究的外展部分旨在通过与当地社区学院和独立 K-12 学区建立合作,直接解决美国竞争力倡议的许多任务,以促进代表性不足的少数族裔学生在化学系内获得实习职位在南卫理公会大学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Sumerlin其他文献

Polymer Science: The Next Generation
高分子科学:下一代

Brent Sumerlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brent Sumerlin', 18)}}的其他基金

Circularizing Squarate-Based Materials: Novel Dynamic Networks
圆形方形材料:新型动态网络
  • 批准号:
    2404144
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
Reshaping Recyclable Thermosets
重塑可回收热固性材料
  • 批准号:
    1904631
  • 财政年份:
    2019
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
Building a Platform of Impact-Energy Absorbing Materials: How Molecular Manipulations Translate into Macroscopic Properties
构建冲击能量吸收材料平台:分子操纵如何转化为宏观特性
  • 批准号:
    1808204
  • 财政年份:
    2018
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
Macromolecular Metamorphosis: Transformable Polymeric Materials
高分子变形:可变形高分子材料
  • 批准号:
    1606410
  • 财政年份:
    2016
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
Proposal for NSF support of the ACS Symposium "Controlled/Living Radical Polymerization" to be held in San Francisco, CA, August 10-14, 2014
NSF 支持 ACS 研讨会“受控/活性自由基聚合”的提案,将于 2014 年 8 月 10 日至 14 日在加利福尼亚州旧金山举行
  • 批准号:
    1419548
  • 财政年份:
    2014
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
Responsive and Healable Materials Constructed via Dynamic-Covalent Bonds
通过动态共价键构建的响应和可修复材料
  • 批准号:
    1410223
  • 财政年份:
    2014
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
CAREER: Stimuli-Responsive Dynamic Macromolecular Assemblies
职业:刺激响应动态大分子组装
  • 批准号:
    0846792
  • 财政年份:
    2009
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

靶向集落刺激因子1受体CSF1R PET分子探针在癫痫神经炎症显像中的研究
  • 批准号:
    82302269
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
PRKD2介导热刺激致结直肠癌细胞铁死亡的作用机制研究
  • 批准号:
    82373450
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于光子纳米喷流光束的神经突触精准刺激及成像
  • 批准号:
    12304322
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁刺激颈迷走神经通过m3AChR/PCMT1/ATF5改善大鼠压力超负荷心力衰竭的机制研究
  • 批准号:
    82300444
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Robust, Reversible, and Stimuli-responsive Thermodynamic Adhesion in Hydrogels
事业:水凝胶中稳健、可逆且刺激响应的热力学粘附
  • 批准号:
    2337592
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
CAREER: Stimuli-responsive biomaterials for wound healing and drug delivery
职业:用于伤口愈合和药物输送的刺激响应生物材料
  • 批准号:
    2239750
  • 财政年份:
    2023
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Interactions of Stimuli-responsive Nanoparticles with Enzymes
职业:刺激响应纳米颗粒与酶的纳米级相互作用
  • 批准号:
    2239629
  • 财政年份:
    2023
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
CAREER: Stimuli-Responsive Self-Assembly of Supramolecular Block Copolymers: Hierarchical Structures and Kinetic Pathways
职业:超分子嵌段共聚物的刺激响应自组装:层次结构和动力学途径
  • 批准号:
    2144997
  • 财政年份:
    2022
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
CAREER: Spatiotemporal Behavior of Stimuli- Responsive Soft Materials in Non-Equilibrium Processes
职业:非平衡过程中刺激响应软材料的时空行为
  • 批准号:
    2048219
  • 财政年份:
    2021
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了