Collaborative Research: Transport and Separation through Virus-Structured Nanoporous Membranes
合作研究:通过病毒结构纳米多孔膜进行运输和分离
基本信息
- 批准号:1264949
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
McCarthy/Maroo 1264949 / 1264958The objective of the proposed collaborative research is to investigate transport and separation phenomena through the protein channel of the tobacco mosaic virus (TMV) using an integrated research methodology combining molecular analysis and simulations along with direct experimental characterization. The TMV is a rigid, hollow, rod-shaped plant virus with a 4-nm diameter central pore defined by 2130 helical coat proteins wrapped around a single strand of RNA. It is an extremely stable bio-molecule, withstanding temperatures of up to 60 degrees C and a pH range of 2 to 11. The surface of the central pore is negatively charged, making it attractive for ion exclusion. The outer surface of the TMV has been genetically modified to facilitate near-vertical assembly and metallization onto various materials. This feature provides a mechanism to develop virus-structured membranes using large-scale industrially relevant manufacturing schemes. Due to its stability, structure, surface charge, and manufacturability, the TMV can potentially transform membrane manufacture for biological and chemical separations. This collaborative research project will bring together the expertise of one PI (Maroo) in molecular dynamics simulations and numerical modeling with a second PI (McCarthy) in TMV biotemplating and nanoscale fabrication. The project will focus on the following numerical and experimental investigations: (1) Determination of the surfaces properties of the TMV central pore, (2) Numerical and molecular modeling of overlapping electric double layers, (3) Molecular dynamics simulations of transport and ionic exclusion through the TMV central pore, (4) Fabrication of virus-structured nanoporous membranes using the self-assembly of the TMV, (5) Experimental characterization of transport phenomena through the TMV membranes, and (6) Experimental characterization of separation through the TMV including size and ionic exclusion. The synergy of these two components (numerical and experimental) will result in a comprehensive understanding of transport and separation through the TMV and demonstrate the potential of TMV-structured membranes for water filtration and chemical and biological separations. The advantages of utilizing biological building blocks in nano-engineered systems include low cost, structural versatility, inherent self-assembly properties, and the ability to tune structure through genetic modifications and environmental control. The knowledge base gained in this work will act as a catalyst for future development in the field of separations and the nanomanufacturing of bio-derived membranes. Broader Impacts. This work will build on the PI's existing participation in Drexel's NSF-funded GK-12 program on the NAE's Grand Challenges (focusing on water desalination) and Syracuse University's Project Engage where the PI holds workshops on modern engineering solutions for K-12 female students. Outreach will extend to pre-college students, particularly those from underrepresented groups in the Philadelphia metropolitan and Syracuse areas and will focus on exposing undergraduates, women, and minorities to multidisciplinary research through integrated research-education initiatives. Undergraduate students at both Drexel and Syracuse will be recruited for research opportunities and participation in the Workshops on Nanoscale Transport through Protein Channels developed by the PIs in the proposed work.
McCarthy/Maroo 1264949 / 1264958拟议合作研究的目标是使用分子分析和模拟以及直接实验表征相结合的综合研究方法来研究通过烟草花叶病毒 (TMV) 蛋白质通道的运输和分离现象。 TMV 是一种刚性、空心、杆状植物病毒,具有 4 纳米直径的中心孔,由包裹在单链 RNA 周围的 2130 个螺旋外壳蛋白限定。 它是一种极其稳定的生物分子,可承受高达 60 摄氏度的温度和 2 至 11 的 pH 范围。中心孔的表面带负电荷,使其对离子排斥具有吸引力。 TMV 的外表面经过基因改造,有助于在各种材料上进行近乎垂直的组装和金属化。 这一特征提供了一种利用大规模工业相关制造方案来开发病毒结构膜的机制。 由于其稳定性、结构、表面电荷和可制造性,TMV 可以潜在地改变生物和化学分离膜的制造。 该合作研究项目将汇集一名 PI (Maroo) 在分子动力学模拟和数值建模方面的专业知识与另一名 PI (McCarthy) 在 TMV 生物模板和纳米级制造方面的专业知识。 该项目将重点进行以下数值和实验研究:(1)TMV中心孔表面特性的测定,(2)重叠双电层的数值和分子建模,(3)输运和离子排斥的分子动力学模拟通过 TMV 中心孔,(4) 利用 TMV 自组装制造病毒结构纳米孔膜,(5) 通过 TMV 膜传输现象的实验表征,以及 (6) 实验通过 TMV 进行分离的表征,包括尺寸和离子排除。 这两个组件(数值和实验)的协同作用将导致对通过 TMV 的传输和分离的全面了解,并证明 TMV 结构膜在水过滤以及化学和生物分离方面的潜力。 在纳米工程系统中利用生物构件的优点包括低成本、结构多功能性、固有的自组装特性以及通过遗传修饰和环境控制调整结构的能力。 这项工作中获得的知识库将成为分离和生物膜纳米制造领域未来发展的催化剂。 更广泛的影响。 这项工作将建立在 PI 现有参与 Drexel 的 NSF 资助的 GK-12 项目的基础上,该项目涉及 NAE 的 Grand Challenges(重点是海水淡化)和雪城大学的 Project Engage,其中 PI 为 K-12 女学生举办了现代工程解决方案研讨会。 外展活动将扩大到大学预科学生,特别是那些来自费城大都市和锡拉丘兹地区代表性不足群体的学生,并将重点通过综合研究教育计划让本科生、女性和少数族裔接触多学科研究。 德雷塞尔大学和雪城大学的本科生将被招募以获得研究机会,并参加由 PI 在拟议工作中开发的蛋白质通道纳米级运输研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shalabh Maroo其他文献
Shalabh Maroo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shalabh Maroo', 18)}}的其他基金
Experimental validation of molecular simulation of water transport across zeolite membranes of nanoscale-thickness
水穿过纳米级厚度沸石膜传输的分子模拟实验验证
- 批准号:
1705752 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CAREER: Experimental and Numerical Study of Nanoscale Evaporation Heat Transfer for Passive-Flow Driven High-Heat Flux Devices
职业:被动流驱动高热通量装置纳米级蒸发传热的实验和数值研究
- 批准号:
1454450 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Experimental Determination of Non-Evaporating Film Thickness in Pool Boiling
EAGER:池沸腾中非蒸发膜厚度的实验测定
- 批准号:
1445946 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
基于空间多组学研究肠道菌群代谢物的跨母胎界面运输
- 批准号:32300538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
月球钻进与月-地运输对月壤样品特征的扰动机理研究
- 批准号:42302356
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
富集于上皮细胞膜顶端转录本magu-2的主动运输机制及功能研究
- 批准号:32300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冠状病毒靶向核质运输系统拮抗宿主免疫应答的机制研究
- 批准号:32372999
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
芯吸冷却表面跨尺度宏微观结构的运输增强机制及制备方法研究
- 批准号:52375442
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant