Recent Advances in Algebraic Geometry

代数几何的最新进展

基本信息

项目摘要

The conference "Recent Advances in Algebraic Geometry" will be held May 16--19, 2013 at the University of Michigan, Ann Arbor. The motivation behind the conference is the extraordinary progress made in the past decade in our understanding of the geometry of higher dimensional algebraic varieties, as well as in areas such as Hodge theory, enumerative geometry, or syzygies. It will bring together leading experts in Algebraic Geometry, to inform the audience of the major developments of the past few years, to propose new research directions, and to establish connections between different subfields. The following themes will be represented at the conference: the Minimal Model Program and its applications, vanishing theorems and multiplier ideals, derived categories and applications, Hodge theory and complex geometry, moduli spaces and enumerative geometry, commutative and computational algebra. More details about the conference, as well as the list of confirmed speakers, are available at the conference website, at http://homepages.math.uic.edu/~mpopa/robfest/The conference will focus on some of the outstanding recent developments in Algebraic Geometry. The speakers have been chosen on the basis of their research contributions to the field, but also for their expository skills and dedication to the development of younger generations of researchers and teachers in mathematics. Some have produced many of the most important textbooks and advanced monographs in Algebraic Geometry in the last decades, have introduced many of today's algebraic geometers to active research topics, and have been a major force in developing the field as a whole. We therefore expect the conference to be well-attended by young researchers wishing to learn about, and then share with members of their groups, current questions in a wide spectrum of topics. The talks will contain a substantial expository and didactic component for this younger audience, for whom it is sometimes difficult to keep up to date with the rapid developments that the field is seeing.
“代数几何的最新进展”会议将于 2013 年 5 月 16 日至 19 日在密歇根大学安娜堡分校举行。 这次会议背后的动机是过去十年来我们在理解高维代数簇几何以及霍奇理论、枚举几何或 syzygies 等领域所取得的非凡进展。 它将汇集代数几何领域的顶尖专家,向观众介绍过去几年的主要发展,提出新的研究方向,并在不同子领域之间建立联系。 会议将讨论以下主题:最小模型程序及其应用、消失定理和乘子理想、派生范畴和应用、霍奇理论和复几何、模空间和枚举几何、交换和计算代数。 有关会议的更多详细信息以及已确认的演讲者名单,请访问会议网站:http://homepages.math.uic.edu/~mpopa/robfest/ 会议将重点关注近期的一些杰出演讲者代数几何的发展。 演讲者的选择不仅基于他们对该领域的研究贡献,还基于他们的阐述技巧以及对年轻一代数学​​研究人员和教师发展的奉献。 在过去的几十年里,有些人出版了许多最重要的代数几何教科书和高级专着,将当今的许多代数几何学家引入了活跃的研究课题,并成为整个领域发展的主要力量。 因此,我们希望希望了解并与小组成员分享广泛主题中当前问题的年轻研究人员能够踊跃参加这次会议。讲座将为年轻观众提供大量的说明和说教内容,对他们来说有时很难跟上该领域的快速发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mircea Mustata其他文献

A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura
Test ideals vs. multiplier ideals
测试理想值与乘数理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Ken
  • 通讯作者:
    Ken
Test ideals vs. multiplier ideals
测试理想值与乘数理想值
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Ken
  • 通讯作者:
    Ken
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
  • DOI:
    10.1090/conm/712/14351
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mircea Mustata; Yusuke Nakamura
  • 通讯作者:
    Yusuke Nakamura

Mircea Mustata的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mircea Mustata', 18)}}的其他基金

Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
  • 批准号:
    2401041
  • 财政年份:
    2024
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
  • 批准号:
    2301463
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
  • 批准号:
    2001132
  • 财政年份:
    2020
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant
Facets of Algebraic Geometry
代数几何的各个方面
  • 批准号:
    1904591
  • 财政年份:
    2019
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
  • 批准号:
    1701622
  • 财政年份:
    2017
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant
A view towards algebraic geometry
对代数几何的看法
  • 批准号:
    1702114
  • 财政年份:
    2017
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
  • 批准号:
    1401227
  • 财政年份:
    2014
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
  • 批准号:
    1265256
  • 财政年份:
    2013
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
  • 批准号:
    1068190
  • 财政年份:
    2011
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
  • 批准号:
    0968646
  • 财政年份:
    2010
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant

相似国自然基金

SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
  • 批准号:
    82302142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CDC20泛素化降解HDAC6诱导POLD1表达介导免疫抑制微环境在肝癌进展中的机制研究
  • 批准号:
    82373245
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
AGEs-RAGE轴诱导的肝细胞衰老促进糖尿病合并非酒精性脂肪性肝病进展的机制研究
  • 批准号:
    82300914
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
扶中消积进展方下调METTL3介导的m6A修饰作用激活铁死亡抑制结直肠癌的生长与肝转移的分子机制研究
  • 批准号:
    82305345
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衰老内皮细胞来源GDF15调控肌腱干细胞铁死亡促进肩袖肌腱病进展的机制研究
  • 批准号:
    82372441
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
  • 批准号:
    2304723
  • 财政年份:
    2023
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Standard Grant
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2022
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2022
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2021
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2021
  • 资助金额:
    $ 4.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了