CGV: Medium: Collaborative Research: Developing conceptual models for navigation, marking, and inspection in the context of 3D image segmentation

CGV:媒介:协作研究:开发 3D 图像分割背景下的导航、标记和检查概念模型

基本信息

  • 批准号:
    1302248
  • 负责人:
  • 金额:
    $ 29.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-15 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

3D image segmentation is an important and ubiquitous task in image-oriented scientific disciplines, particularly biomedicine, where images provide the basis for biological discovery. While imaging techniques reveal spatial content and activities within an entire subject, ultimately biologists are interested in specific anatomical structures (e.g., organs, tissues, cells, etc.). Delineation of the structures of interest within a given set of images is therefore a typical first-step in the data-to-knowledge pipeline, with both the efficiency and accuracy of segmentation critically affecting how the data is utilized in research and clinical practice. Creating accurate segmentations, particularly for 3D biomedical images, is a non-trivial task that calls for cooperation between humans and computers. While human experts, with their superior visual perception skills and vast knowledge and experience acquired from years of training, ultimately decide what constitutes an accurate segmentation, they lack the objectivity or efficiency of computational algorithms. On the other hand, without expert guidance, segmentation algorithms easily fail in the presence of the noise and ambiguity that are inevitable in biomedical images. In this research the PIs will investigate 3D image segmentation as a human-computer interaction paradigm to better understand the human factors that are involved in the current segmentation process, with the goal of making the process more efficient, accurate and repeatable. The team's hypothesis is that the segmentation process could be significantly improved through a deeper understanding of how people perform low-level perception and cognition tasks in the context of 3D segmentation (e.g., visual cues, delineation of structures by marks, and local accuracy or quality criteria), and how domain experts wish to specify high-level segmentation constraints (e.g., connectivity, topology, and shape). To test this hypothesis the PIs will analyze the segmentation process by domain experts that span a reasonable subspace of the actual segmentors and segmentation tasks in biology and clinical practice, to define a conceptual framework that captures the low-level perception and cognitive elements of segmentation as well as the higher-level information related to navigation, marking, and inspection. Building upon and instantiating the framework, the team will work with experts to develop a prototype segmentation tool that explores novel interaction and visualization paradigms as well as their supporting algorithms. The prototype tool will be used to both verify the conceptual framework and to create a more effective practical solution to segmentation.Broader Impacts: By formulating and studying segmentation as a human perception and cognitive task, this work represents a major departure from existing research on either segmentation algorithms or tools. The resulting conceptual framework will serve as a bridge between the two communities, leading both to better designs for current and future segmentation tools and the framing of new problems for segmentation algorithms. For end users, the working prototype will support a more effective segmentation experience that is powered by the underlying conceptual framework. Furthermore, formalizing the kinds of perceptual cues and conceptual models users have when approaching the segmentation problem will serve as a useful test case for understanding the more general question of how perception and cognition interact when they are re-mapped to solve a problem they were never designed for. To disseminate the findings of this research, the PIs will release their working prototype as an open-source project, which can then serve as a shared communication platform between algorithm developers, tool developers, and end users.
3D 图像分割是面向图像的科学学科中一项重要且普遍的任务,特别是生物医学,图像为生物发现提供了基础。 虽然成像技术揭示了整个对象内的空间内容和活动,但最终生物学家对特定的解剖结构(例如器官、组织、细胞等)感兴趣。 因此,在给定的图像集中描绘感兴趣的结构是数据到知识管道中典型的第一步,分割的效率和准确性都严重影响数据在研究和临床实践中的利用方式。 创建准确的分割,尤其是 3D 生物医学图像的分割,是一项艰巨的任务,需要人与计算机之间的合作。 尽管人类专家凭借其卓越的视觉感知能力以及多年训练中获得的丰富知识和经验,最终决定了准确的分割,但他们缺乏计算算法的客观性或效率。 另一方面,如果没有专家指导,在生物医学图像中不可避免的存在噪声和模糊性的情况下,分割算法很容易失败。 在这项研究中,PI 将研究 3D 图像分割作为人机交互范例,以更好地理解当前分割过程中涉及的人为因素,目标是使该过程更加高效、准确和可重复。 该团队的假设是,通过更深入地了解人们如何在 3D 分割的背景下执行低级感知和认知任务(例如视觉线索、通过标记描绘结构以及局部准确性或质量),可以显着改进分割过程。标准),以及领域专家希望如何指定高级分段约束(例如,连接性、拓扑和形状)。 为了检验这一假设,PI 将分析领域专家的分割过程,这些专家跨越生物学和临床实践中实际分割器和分割任务的合理子空间,以定义一个概念框架,该框架捕获分割的低级感知和认知元素:以及与导航、标记和检查相关的更高级别的信息。 在该框架的基础上,该团队将与专家合作开发原型分割工具,探索新颖的交互和可视化范例及其支持算法。 原型工具将用于验证概念框架并创建更有效的实际分割解决方案。更广泛的影响:通过将分割制定和研究为人类感知和认知任务,这项工作代表了与现有研究的重大背离分割算法或工具。 由此产生的概念框架将成为两个社区之间的桥梁,从而为当前和未来的分割工具提供更好的设计,并为分割算法提出新问题。 对于最终用户而言,工作原型将支持由底层概念框架提供支持的更有效的细分体验。 此外,形式化用户在处理分割问题时所拥有的感知线索和概念模型的类型将作为一个有用的测试用例,用于理解更普遍的问题,即当感知和认知被重新映射以解决他们从未遇到过的问题时,感知和认知如何相互作用。设计用于。 为了传播这项研究的结果,PI 将以开源项目的形式发布他们的工作原型,然后该原型可以作为算法开发人员、工具开发人员和最终用户之间的共享通信平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruth West其他文献

Developing and Validating a Computer-Based Training Tool for Inferring 2D Cross-Sections of Complex 3D Structures
开发和验证基于计算机的训练工具,用于推断复杂 3D 结构的 2D 横截面
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anahita Sanandaji;C. Grimm;Ruth West;Christopher A Sanchez
  • 通讯作者:
    Christopher A Sanchez
Turning Presence Inside-Out: MetaNarratives
将存在从内到外转变:元叙事
Exploring the definition of art through deep net visualization
通过深度网络可视化探索艺术的定义
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. P. Lewis;I. C. Yeh;Agata Migalska;Samuel B. Johnson;Ruth West
  • 通讯作者:
    Ruth West
An Ontology-Driven Knowledge Environment For Subcellular Neuroanatomy
本体驱动的亚细胞神经解剖学知识环境
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Fong;S. Larson;Amarnath Gupta;C. Condit;W. Bug;Li Chen;Ruth West;S. Lamont;M. Terada;M. Martone
  • 通讯作者:
    M. Martone
A state of the art and scoping review of embodied information behavior in shared, co-present extended reality experiences
对共享、共同呈现的扩展现实体验中的具体信息行为进行最新技术和范围审查
  • DOI:
    10.2352/ei.2022.34.12.ervr-298
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kathryn Hays;Arturo Barrera;Lydia Ogbadu;Olumuyiwa Oyedare;Julia Payne;Mohotarema Rashid;Jennifer Stanley;Lisa Stocker;C. Lueg;Michael Twidale;Ruth West
  • 通讯作者:
    Ruth West

Ruth West的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruth West', 18)}}的其他基金

Collaborative Research: NRI: FND: Grounded Reasoning about Robot Capabilities for Law and Policy
合作研究:NRI:FND:关于机器人法律和政策能力的基础推理
  • 批准号:
    2024643
  • 财政年份:
    2020
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Collaborative Research: ImageQuest: Citizens Advancing Biology with Calibrated Imaging and Validated Analysis
合作研究:ImageQuest:公民通过校准成像和验证分析推进生物学发展
  • 批准号:
    1345795
  • 财政年份:
    2013
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Collaborative Research: ImageQuest: Citizens Advancing Biology with Calibrated Imaging and Validated Analysis
合作研究:ImageQuest:公民通过校准成像和验证分析推进生物学发展
  • 批准号:
    1053566
  • 财政年份:
    2010
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
SGER: Metadata-Driven Approach to Discovery-Oriented Exploration of Massive Data Sets
SGER:元数据驱动的海量数据集发现导向探索方法
  • 批准号:
    0841031
  • 财政年份:
    2008
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

CGV: Medium: Collaborative Research: Developing conceptual models for navigation, marking, and inspection in the context of 3D image segmentation
CGV:媒介:协作研究:开发 3D 图像分割背景下的导航、标记和检查概念模型
  • 批准号:
    1302200
  • 财政年份:
    2013
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: Developing conceptual models for navigation, marking, and inspection in the context of 3D image segmentation
CGV:媒介:协作研究:开发 3D 图像分割背景下的导航、标记和检查概念模型
  • 批准号:
    1302142
  • 财政年份:
    2013
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: A Heterogeneous Inference Framework for 3D Modeling and Rendering of Sites
CGV:媒介:协作研究:用于站点 3D 建模和渲染的异构推理框架
  • 批准号:
    1302172
  • 财政年份:
    2013
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: A Heterogeneous Inference Framework for 3D Modeling and Rendering of Sites
CGV:媒介:协作研究:用于站点 3D 建模和渲染的异构推理框架
  • 批准号:
    1302267
  • 财政年份:
    2013
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: Visualizing Comparisons
CGV:媒介:协作研究:可视化比较
  • 批准号:
    1162037
  • 财政年份:
    2012
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了