CAREER: Differentially-Private Machine Learning with Applications to Biomedical Informatics
职业:差分隐私机器学习及其在生物医学信息学中的应用
基本信息
- 批准号:1253942
- 负责人:
- 金额:$ 49.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning on large-scale patient medical records can lead to the discovery of novel population-wide patterns enabling advances in genetics, disease mechanisms, drug discovery, healthcare policy, and public health. However, concerns over patient privacy prevent biomedical researchers from running their algorithms on large volumes of patient data, creating a barrier to important new discoveries through machine-learning. The goal of this project is to address this barrier by developing privacy-preserving tools to query, cluster, classify and analyze medical databases. In particular, the project aims to ensure differential privacy --- a formal mathematical notion of privacy designed by cryptographers which has gained considerable attention in the systems, algorithms, machine-learning and data-mining communities in recent years. The primary challenge in applying differentially-private machine learning tools to biomedical informatics is the lack of statistical efficiency, or the large number of samples required.The project will overcome this challenge by drawing on insights obtained from the PI's expertise to develop differentially-private and highly statistically-efficient machine learning tools for classification and clustering. The proposed research will advance the state-of-the-art in privacy-preserving data analysis by combining insights from differential privacy, statistics, machine learning, and database algorithms. The proposed research is closely tied to the development of the undergraduate and graduate curricula at UCSD, feeding into the PI's new undergraduate machine learning class, a new graduate learning theory class, and updates to an algorithm design and analysis class. The corresponding materials will be publicly disseminated through the PI's website. The PI is strongly committed to increasing the participation of women and minorities, and will engage in outreach activities to attract and retain women in computer science.
对大规模患者病历的机器学习可以发现新的人群范围模式,从而促进遗传学、疾病机制、药物发现、医疗保健政策和公共卫生的进步。然而,对患者隐私的担忧阻止生物医学研究人员在大量患者数据上运行他们的算法,从而为通过机器学习获得重要的新发现设置了障碍。该项目的目标是通过开发隐私保护工具来查询、聚类、分类和分析医疗数据库来解决这一障碍。特别是,该项目旨在确保差异隐私——密码学家设计的一种正式的隐私数学概念,近年来在系统、算法、机器学习和数据挖掘社区中获得了相当多的关注。 将差分隐私机器学习工具应用于生物医学信息学的主要挑战是缺乏统计效率,或者需要大量样本。该项目将通过利用从 PI 的专业知识中获得的见解来开发差分隐私和用于分类和聚类的统计效率极高的机器学习工具。拟议的研究将通过结合差异隐私、统计学、机器学习和数据库算法的见解,推进隐私保护数据分析的最先进水平。拟议的研究与加州大学圣地亚哥分校本科生和研究生课程的发展密切相关,为 PI 的新本科机器学习课程、新的研究生学习理论课程以及算法设计和分析课程的更新提供支持。 相应材料将通过PI网站公开发布。 PI 坚定致力于增加女性和少数族裔的参与,并将开展外展活动以吸引和留住计算机科学领域的女性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kamalika Chaudhuri其他文献
Robustness of Locally Differentially Private Graph Analysis Against Poisoning
局部差分私有图分析抗中毒的鲁棒性
- DOI:
10.48550/arxiv.2210.14376 - 发表时间:
2022-10-25 - 期刊:
- 影响因子:0
- 作者:
Jacob Imola;A. Chowdhury;Kamalika Chaudhuri - 通讯作者:
Kamalika Chaudhuri
Value-maximizing deadline scheduling and its application to animation rendering
价值最大化期限调度及其在动画渲染中的应用
- DOI:
10.1145/1073970.1074019 - 发表时间:
2005-07-18 - 期刊:
- 影响因子:0
- 作者:
Eric Anderson;D. Beyer;Kamalika Chaudhuri;T. Kelly;Norman Salazar;Cipriano A. Santos;R. Swaminathan;R. Tarjan;J. Wiener;Yunhong Zhou - 通讯作者:
Yunhong Zhou
Differentially Private Continual Release of Graph Statistics
图统计的差分隐私持续发布
- DOI:
10.3389/fmicb.2019.00655 - 发表时间:
2018-09-07 - 期刊:
- 影响因子:0
- 作者:
Shuang Song;Susan Little;Sanjay Mehta;S. Vinterbo;Kamalika Chaudhuri - 通讯作者:
Kamalika Chaudhuri
Composition properties of inferential privacy for time-series data
时间序列数据推理隐私的组成属性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shuang Song;Kamalika Chaudhuri - 通讯作者:
Kamalika Chaudhuri
Bayesian Active Learning With Non-Persistent Noise
具有非持续性噪声的贝叶斯主动学习
- DOI:
10.1109/tit.2015.2432101 - 发表时间:
2015-05-12 - 期刊:
- 影响因子:2.5
- 作者:
Mohammad Naghshvar;T. Javidi;Kamalika Chaudhuri - 通讯作者:
Kamalika Chaudhuri
Kamalika Chaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kamalika Chaudhuri', 18)}}的其他基金
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 49.06万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Robust and Private Federated Analytics on Networked Data
SaTC:核心:小型:网络数据的稳健且私密的联合分析
- 批准号:
2241100 - 财政年份:2023
- 资助金额:
$ 49.06万 - 项目类别:
Standard Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804829 - 财政年份:2018
- 资助金额:
$ 49.06万 - 项目类别:
Continuing Grant
CCF: CIF: Small: Interactive Learning from Noisy, Heterogeneous Feedback
CCF:CIF:小型:从嘈杂、异构的反馈中进行交互式学习
- 批准号:
1719133 - 财政年份:2017
- 资助金额:
$ 49.06万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: New Directions in Spectral Learning with Applications to Comparative Epigenomics
RI:小型:协作研究:光谱学习的新方向及其在比较表观基因组学中的应用
- 批准号:
1617157 - 财政年份:2016
- 资助金额:
$ 49.06万 - 项目类别:
Standard Grant
相似国自然基金
松嫩草地混合放牧利用下的牛羊差异化营养调控机制研究
- 批准号:32301497
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
准社会互动视角下CSR数字化沟通对品牌绩效的差异化影响、机制与管理对策
- 批准号:72362008
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
基于低碳供应链多主体差异化决策的碳标签规制研究
- 批准号:72304246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向泛在终端资源的差异化联邦学习系统关键技术研究
- 批准号:62302054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DRG付费模式下差异化支付策略对医保成本效益的影响研究
- 批准号:72374206
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 49.06万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 49.06万 - 项目类别:
Continuing Grant
CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
- 批准号:
2334449 - 财政年份:2024
- 资助金额:
$ 49.06万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 49.06万 - 项目类别:
Standard Grant
EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
- 批准号:
2329919 - 财政年份:2023
- 资助金额:
$ 49.06万 - 项目类别:
Standard Grant