BIGDATA: Small: DA: DCM: Measurement and Learning in Large-Scale Social Networks
BIGDATA:小型:DA:DCM:大规模社交网络中的测量和学习
基本信息
- 批准号:1251267
- 负责人:
- 金额:$ 74.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the context of social networks, "big data" generally involves information on very large social systems whose elements of interest display complex dependence. State-of-the-art statistical models for such systems require the use of computationally expensive stochastic simulation techniques to capture this dependence; these techniques do not generally scale well to the large-population case. One potential solution to this problem is to focus detailed modeling efforts on smaller subpopulations (e.g., groups, communities, etc.) extracted from the larger system. While scalability of the subsystem models is less challenging in this case, one must have appropriate methods for sampling from large networks in such a manner as to permit principled inference, and modeling techniques that recognize the coupling between local subpopulations and the broader network in which they are embedded.The PI will bridge the gap between expensive, highly detailed models and the limits of computability imposed by Big Data by combining expertise from machine learning and social network modeling within a unifying exponential family framework. The research will develop novel methods for the scalable measurement and analysis of large social networks, validating these techniques by deploying them in the context of dynamic data collection from online social networks. Specifically, the researchers will combine probabilistic graphical models and exponential family random graph models (ERGMs) to: (i) identify models with low computational requirements by exploiting limited-range dependence; (ii) develop machine learning techniques for identifying weakly coupled regimes in large networks to facilitate sampling and subgraph modeling; and (iii) develop integrated sampling and modeling strategies for inference from subgraphs of large networks that capture coupling to the structures in which they are embedded. This proposal investigates these questions in both the cross-sectional and dynamic contexts, for networks with and without vertex attributes. The sampling techniques created via this project will be deployed as an extension of a broader infrastructure for data collection in online social networks developed and maintained by one of the PIs, allowing for evaluation in a practical setting.The methods developed via this research will allow for analysis of data relating to many problems of public interest, including epidemiological, security, and emergency management applications; data collection and analysis activities within the project will include applications in the natural hazard context, with the potential to inform policies that can save lives and property during disasters. The project will be integrated with graduate and undergraduate education, as well as postdoctoral mentoring. Tools developed via this project will be released as part of a widely used open-source toolkit for statistical network analysis (statnet), allowing widespread dissemination to researchers and practitioners in a range of fields.
在社交网络的背景下,“大数据”通常涉及非常大的社会系统的信息,其感兴趣的元素表现出复杂的依赖性。 此类系统的最先进的统计模型需要使用计算成本昂贵的随机模拟技术来捕获这种依赖性;这些技术通常不能很好地适应大量人口的情况。 该问题的一个潜在解决方案是将详细建模工作集中在从较大系统中提取的较小子群体(例如群体、社区等)上。 虽然在这种情况下子系统模型的可扩展性不那么具有挑战性,但必须有适当的方法从大型网络中采样,以允许原则性推理,以及识别本地子群体与它们所在的更广泛网络之间的耦合的建模技术。 PI 将通过在统一的指数族框架内结合机器学习和社交网络建模的专业知识,弥合昂贵、高度详细的模型与大数据带来的可计算性限制之间的差距。 该研究将开发用于大型社交网络的可扩展测量和分析的新方法,通过在在线社交网络动态数据收集的背景下部署这些技术来验证这些技术。具体来说,研究人员将结合概率图模型和指数族随机图模型(ERGM)来:(i)通过利用有限范围依赖性来识别计算要求较低的模型; (ii) 开发机器学习技术来识别大型网络中的弱耦合机制,以促进采样和子图建模; (iii) 开发集成的采样和建模策略,用于从大型网络的子图进行推理,捕获与其嵌入的结构的耦合。 该提案在横截面和动态环境中研究了具有和不具有顶点属性的网络的这些问题。 通过该项目创建的采样技术将被部署为由一名 PI 开发和维护的在线社交网络中更广泛的数据收集基础设施的扩展,从而可以在实际环境中进行评估。通过这项研究开发的方法将允许分析与许多公共利益问题相关的数据,包括流行病学、安全和应急管理应用;该项目内的数据收集和分析活动将包括在自然灾害背景下的应用,有可能为在灾害期间拯救生命和财产的政策提供信息。 该项目将与研究生和本科生教育以及博士后指导相结合。 通过该项目开发的工具将作为广泛使用的统计网络分析开源工具包(statnet)的一部分发布,从而可以向各个领域的研究人员和从业人员广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Animashree Anandkumar其他文献
MIT Open Access Articles Scaling laws for learning high-dimensional Markov forest distributions
麻省理工学院开放获取文章学习高维马尔可夫森林分布的缩放定律
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Vincent Y. F. Tan;Animashree Anandkumar;A. Willsky - 通讯作者:
A. Willsky
Animashree Anandkumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Animashree Anandkumar', 18)}}的其他基金
CAREER: Modeling Dependencies via Graphs: Scalable Inference Methods for Massive Datasets
职业:通过图建模依赖关系:海量数据集的可扩展推理方法
- 批准号:
1254106 - 财政年份:2013
- 资助金额:
$ 74.68万 - 项目类别:
Continuing Grant
Graphical Approaches to Modeling High-Dimensional Data
高维数据建模的图形方法
- 批准号:
1219234 - 财政年份:2012
- 资助金额:
$ 74.68万 - 项目类别:
Standard Grant
相似国自然基金
聚合物化A-DA'D-A型稠环小分子受体材料的设计、合成及其光伏性能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
涤痰汤对PV- Glu/SKCa- DA能神经元通路的影响
- 批准号:81774230
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
小胶质细胞TLR3/4-TRIF信号转导对DA神经元存活的作用及机制
- 批准号:81241019
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
HLrp对JAK-STAT通路的可能调控在LPS诱导小胶质细胞活化及DA能细胞损伤中的作用
- 批准号:30972429
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
小胶质细胞NADPH氧化酶在LPS和聚集的α-Synuclein介导的DA能神经细胞协同损伤中的作用和机制
- 批准号:30770745
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations
BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析
- 批准号:
1638429 - 财政年份:2016
- 资助金额:
$ 74.68万 - 项目类别:
Standard Grant
BIGDATA: Small: DA: Mining large graphs through subgraph sampling
BIGDATA:小:DA:通过子图采样挖掘大图
- 批准号:
1250786 - 财政年份:2013
- 资助金额:
$ 74.68万 - 项目类别:
Standard Grant
BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations
BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析
- 批准号:
1251031 - 财政年份:2013
- 资助金额:
$ 74.68万 - 项目类别:
Standard Grant
BIGDATA: Small: DA: Classification Platform for Novel Scientific Insight on Time-Series Data
BIGDATA:小型:DA:时间序列数据新科学见解的分类平台
- 批准号:
1251274 - 财政年份:2013
- 资助金额:
$ 74.68万 - 项目类别:
Standard Grant
BIGDATA: Small DA Social Behavior Driven Modeling and Optimization of Information
BIGDATA:小型 DA 社会行为驱动的信息建模和优化
- 批准号:
8842138 - 财政年份:2013
- 资助金额:
$ 74.68万 - 项目类别: