EAGER: Flame Synthesis of Graphene Films
EAGER:石墨烯薄膜的火焰合成
基本信息
- 批准号:1249259
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Carbon-based nanostructures and films define a new class of engineered materials that display remarkable photonic, electrical, and mechanical properties. Graphene is a monolayer of sp2-bonded carbon atoms in a two-dimensional (2-D) structure. This layer of atoms can be wrapped into 0-D fullerenes, rolled into 1-D nanotubes, or stacked as in 3-D graphite. A novel technique to grow graphene films in open environments on substrates has been developed using multiple inverse-diffusion flames with methane as fuel. The post-flame hydrocarbon species (rich in CHm and Cn), which serve as reagents for carbon-based growth, are generated in quantities much greater than that achievable in stable, self-sustained premixed flames. Moreover, the inverse diffusion flame geometry ensures that oxygen is completely consumed at the flame front, permitting the production of high-quality films. This flame synthesis configuration is potentially transformative and breaks away from the conventional need for confined synthesis (as in standard chambered Chemical Vapor Deposition), and is capable of nanomaterials synthesis in open-atmosphere environments, affording not only scalable large volume production, but also large-area growth over different contoured surfaces (e.g. by rasterizing burner or translating substrate) at high rates. This exploratory program is aimed at increasing fundamental understanding of the mechanisms of graphene growth in flames, and utilization of that understanding to define process conditions that enable high-rate and high-quality synthesis of graphene films. Specifically, experiments will be conducted to characterize the effects of fuel composition, flame temperature, inert addition, hydrogen addition, oxygen concentration, pressure, substrate material, substrate temperature, burner-substrate distance, and other controllable process parameters on graphene growth and properties. In-situ laser-based diagnostics, including spontaneous Raman spectroscopy, laser-induced fluorescence, and laser-induced breakdown spectroscopy, will be used to determine the local growth conditions, such key gas-phase chemical species concentrations and temperature.Isolating monolayer graphene by microcleaving and discovering its amazing properties has generated intense experimental research on its fabrication. However, widespread use of graphene will require large-scale synthesis methods. Production methods that currently exist are typically expensive, require long processing times, and are limited to confined synthesis. The growth of these nanostructures and films over large areas remains especially challenging. Accordingly, it is evident that there is a strong need for better methods of synthesizing nanostructures, particularly carbon-based nanostructures. Flame synthesis has demonstrated a history of scalability and offers the potential for high-volume continuous production at reduced costs. In utilizing combustion, a portion of the hydrocarbon gas provides the elevated temperatures required, with the remaining fuel serving as the hydrocarbon reagent, thereby constituting an efficient source of both energy and hydrocarbon reactant. These aspects can be especially important as the operating costs for producing advanced materials, especially in the semiconductor industry, far exceed the equipment costs. In addition, the research affords the possibility of coating large existing structures with graphene in open environments, which is currently not possible.
碳基纳米结构和薄膜定义了一类新型工程材料,具有卓越的光子、电学和机械性能。 石墨烯是二维 (2-D) 结构中 sp2 键合碳原子的单层。 这层原子可以包裹成 0-D 富勒烯,卷成 1-D 纳米管,或者像 3-D 石墨一样堆叠。 使用甲烷作为燃料的多重反向扩散火焰,开发了一种在开放环境中在基底上生长石墨烯薄膜的新技术。 火焰后碳氢化合物(富含 CHm 和 Cn)作为碳基生长的试剂,其产生量远大于稳定、自持预混火焰中可达到的量。 此外,逆扩散火焰几何形状确保氧气在火焰前沿完全消耗,从而可以生产高质量的薄膜。 这种火焰合成配置具有潜在的变革性,摆脱了传统的密闭合成需求(如标准室化学气相沉积),并且能够在开放大气环境中合成纳米材料,不仅能够提供可扩展的大批量生产,而且能够实现大规模生产。 -不同轮廓表面上的面积高速增长(例如通过光栅化燃烧器或平移基板)。该探索性计划旨在增进对火焰中石墨烯生长机制的基本了解,并利用这种了解来定义能够实现石墨烯薄膜高速率和高质量合成的工艺条件。 具体来说,将进行实验来表征燃料成分、火焰温度、惰性添加、氢气添加、氧气浓度、压力、基底材料、基底温度、燃烧器-基底距离和其他可控工艺参数对石墨烯生长和性能的影响。 基于激光的原位诊断,包括自发拉曼光谱、激光诱导荧光和激光诱导击穿光谱,将用于确定局部生长条件,例如关键气相化学物质浓度和温度。微切割并发现其惊人的特性引发了对其制造的深入实验研究。 然而,石墨烯的广泛使用需要大规模的合成方法。 目前存在的生产方法通常价格昂贵,需要较长的处理时间,并且仅限于有限的合成。 这些纳米结构和薄膜的大面积生长仍然特别具有挑战性。 因此,显然强烈需要合成纳米结构、特别是碳基纳米结构的更好方法。 火焰合成已经证明了可扩展性,并提供了以降低成本进行大批量连续生产的潜力。 在利用燃烧时,一部分碳氢化合物气体提供所需的高温,而剩余的燃料充当碳氢化合物试剂,从而构成能量和碳氢化合物反应物的有效来源。 这些方面尤其重要,因为生产先进材料(尤其是半导体行业)的运营成本远远超过设备成本。 此外,该研究还提供了在开放环境中用石墨烯涂覆大型现有结构的可能性,而这目前是不可能的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Tse其他文献
Decentralized Basic Income: Creating Wealth with On-Chain Staking and Fixed-Rate Protocols
去中心化的基本收入:通过链上质押和固定利率协议创造财富
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
H. Lau;Stephen Tse - 通讯作者:
Stephen Tse
Typed Intermediate Languages
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Stephen Tse - 通讯作者:
Stephen Tse
Stephen Tse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Tse', 18)}}的其他基金
NSF-DFG Confine: Reacting precursor/solvent microdroplets in confined 2-D microflows for tailored nanomaterials synthesis
NSF-DFG Confine:在受限的二维微流中反应前体/溶剂微滴,以实现定制的纳米材料合成
- 批准号:
2234283 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Flame Synthesis of Metal-Oxide/Carbide Nanowires
金属氧化物/碳化物纳米线的火焰合成
- 批准号:
0755615 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Catalytic Flame Synthesis of Carbon Nanotubes
碳纳米管的催化火焰合成
- 批准号:
0522556 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Integrated Study of Nanopowder Synthesis and Pollutant Control using Electrically-Assisted Combustion
电辅助燃烧纳米粉体合成与污染物控制综合研究
- 批准号:
0325057 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Engineering Research Equipment: Laser Diagnostics for Nanostructured Materials Synthesis
工程研究设备:纳米结构材料合成的激光诊断
- 批准号:
0213929 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
火焰燃烧反应合成非经典富勒烯
- 批准号:22301249
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
火焰喷雾热解合成Pt/TiO2单原子催化剂的过程机理研究
- 批准号:52376111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
含能离子液体催化燃烧用负载型纳米颗粒的火焰合成及调控研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高熵CO2敏感材料的火焰合成及性能调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
高性能光学颗粒材料的火焰合成调控机理及应用
- 批准号:52130606
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:重点项目
相似海外基金
Mechanisms and Synthesis of Materials for Next-Generation Lithium Batteries Using Flame Spray Pyrolysis
利用火焰喷雾热解制备下一代锂电池材料的机理和合成
- 批准号:
EP/T015233/1 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Examining thyroid hormone synthesis feedback loops as xenobiotic target for brominated flame retardant metabolites
检查甲状腺激素合成反馈回路作为溴化阻燃剂代谢物的异生素靶标
- 批准号:
10373054 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Examining thyroid hormone synthesis feedback loops as xenobiotic target for brominated flame retardant metabolites
检查甲状腺激素合成反馈回路作为溴化阻燃剂代谢物的异生素靶标
- 批准号:
10193280 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Flexible Flame Aerosol Synthesis Technology
柔性火焰气溶胶合成技术
- 批准号:
LE210100084 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Mechanisms and Synthesis of Materials for Next-Generation Lithium Batteries Using Flame Spray Pyrolysis
利用火焰喷雾热解制备下一代锂电池材料的机理和合成
- 批准号:
EP/T015845/1 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Research Grant