EFRI-COPN: Neuroscience and Neural Networks for Engineering the Future Intelligent Electric Power Grid

EFRI-COPN:用于设计未来智能电网的神经科学和神经网络

基本信息

  • 批准号:
    1238097
  • 负责人:
  • 金额:
    $ 63.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-01-02 至 2014-10-31
  • 项目状态:
    已结题

项目摘要

The basis of this project is a new and deep partnership between Steve Potter, a world pioneer in searching for functional capabilities of neural circuits in vitro ("living neural networks, LNN"), and the Venyagamoorthy team, which has led the application of adaptive, anticipatory optimization to components of the electric power grid.The two groups are combining together to address the challenge of spatial complexity. Previous work on LNNs has focused on challenges like managing a single control variable, but electric power grids entail thousands of interconnected variables which must be managed in real-time. The new work in vitro will probe the ability of LNNs made up of thousands of neurons and glia to predict the behavior of a complicated power grid simulator, and test the ability of new biological learning models to explain their capabilities. New mathematical concepts for how to cope with complexity will also be tested in addressing the same prediction challenge, and in attempting to apply adaptive, anticipatory control for the first time to large scale power grid control in simulation. Testing on commercial electric power grids will mainly occur through their collaborations with Mexico, Brazil, China, Nigeria, Singapore and South Africa.The use of wind power to displace coal and reduce CO2 emissions is currently limited to about 20%, because of the lack of anticipatory optimization (and optimal time-shifting, as demonstrated in the work of Venayagamoorthy et al.) and storage. If combined with adequate storage, the new algorithms aimed at here should make it possible for both China and the US to assimilate enough wind (or solar) power to be able to zero out their emissions of CO2 in power generation. It currently appears that the US and China both have enough onshore wind resources to make this possible.
该项目的基础是 Steve Potter 与 Venyagamoorthy 团队之间的新的深度合作,Steve Potter 是寻找体外神经回路功能(“活神经网络,LNN”)的世界先驱,Venyagamoorthy 团队领导了自适应神经网络的应用。 ,对电网组件的预期优化。两个小组正在联合起来解决空间复杂性的挑战。先前有关 LNN 的工作主要集中于管理单个控制变量等挑战,但电网需要数千个必须实时管理的互连变量。这项新的体外工作将探讨由数千个神经元和神经胶质细胞组成的 LNN 预测复杂电网模拟器行为的能力,并测试新的生物学习模型解释其能力的能力。如何应对复杂性的新数学概念也将在解决相同的预测挑战时得到测试,并尝试首次将自适应预期控制应用于仿真中的大规模电网控制。商业电网的测试将主要通过与墨西哥、巴西、中国、尼日利亚、新加坡和南非的合作进行。利用风电替代煤炭并减少二氧化碳排放量目前限制在20%左右,因为缺乏足够的资源。预期优化(以及最佳时移,如 Venayagamoorthy 等人的工作所示)和存储。如果与足够的存储相结合,针对这里的新算法应该使中国和美国能够吸收足够的风能(或太阳能),从而能够将发电中的二氧化碳排放量归零。 目前看来,美国和中国都拥有足够的陆上风能资源来实现这一目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ganesh Venayagamoorthy其他文献

Ganesh Venayagamoorthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ganesh Venayagamoorthy', 18)}}的其他基金

Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
  • 批准号:
    2318612
  • 财政年份:
    2023
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks
合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设
  • 批准号:
    2131070
  • 财政年份:
    2021
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Real-Time Intelligence for Smart Electric Grid Operations (RISE)
合作研究:规划资助:I/UCRC 智能电网运营实时智能 (RISE)
  • 批准号:
    1464637
  • 财政年份:
    2015
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
Collaborative Research: An Intelligent Restoration System for a Self-healing Smart Grid (IRS-SG)
合作研究:用于自愈智能电网的智能恢复系统(IRS-SG)
  • 批准号:
    1408141
  • 财政年份:
    2014
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
Scalable Intelligent Power Monitoring and Optimal Control of Distributed Energy Systems Using Adaptive Critics
使用自适应批评的分布式能源系统的可扩展智能电力监控和优化控制
  • 批准号:
    1308192
  • 财政年份:
    2013
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
AIR Option 2: Research Alliance Situational Intelligence for Smart Grid Optimization and Intelligent Control
AIR选项2:智能电网优化和智能控制研究联盟态势智能
  • 批准号:
    1312260
  • 财政年份:
    2013
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Intelligence Methods for Dynamic Stochastic Optimization of Smart Grid Operation with High Penetration of Renewable Energy
合作研究:可再生能源高渗透智能电网运行动态随机优化的计算智能方法
  • 批准号:
    1232070
  • 财政年份:
    2012
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
RAPID: Impact of Earthquakes on the Electricity Infrastructure
RAPID:地震对电力基础设施的影响
  • 批准号:
    1216298
  • 财政年份:
    2012
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Standard Grant
CAREER: Scalable Learning and Adaptation with Intelligent Techniques and Neural Networks for Reconfiguration and Survivability of Complex Systems
职业:利用智能技术和神经网络进行可扩展的学习和适应,以实现复杂系统的重新配置和生存能力
  • 批准号:
    1231820
  • 财政年份:
    2012
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于天然产物佛司可林结构的抗慢性阻塞性肺病先导化合物发现
  • 批准号:
    22377138
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
山豆根-射干药对治疗慢性阻塞性肺病的配伍增效物质基础及作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
hERG钾离子通道的SUMOylation化在慢性阻塞性肺病致心律失常的作用及分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
LncRNA NR-026690通过miR-324-3p/RAPGEF3调控慢性阻塞性肺病急性加重CD4+T细胞功能和炎症反应
  • 批准号:
    82000051
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于小气道病变及肺呼吸运动的多层次智能慢性阻塞性肺病的评估与预测方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

CopN mechanism as a key to understanding Type Three Secretion in bacteria
CopN 机制是理解细菌三型分泌的关键
  • 批准号:
    8759663
  • 财政年份:
    2014
  • 资助金额:
    $ 63.84万
  • 项目类别:
CopN mechanism as a key to understanding Type Three Secretion in bacteria
CopN 机制是理解细菌三型分泌的关键
  • 批准号:
    9305827
  • 财政年份:
    2014
  • 资助金额:
    $ 63.84万
  • 项目类别:
CopN mechanism as a key to understanding Type Three Secretion in bacteria
CopN 机制是理解细菌三型分泌的关键
  • 批准号:
    9093685
  • 财政年份:
    2014
  • 资助金额:
    $ 63.84万
  • 项目类别:
Investigation of the pathophysiological mechanisms of chronic obstructive pulmonary disease by the inhibition of mTOR-related cell prolifelative signal
抑制mTOR相关细胞增殖信号研究慢性阻塞性肺疾病的病理生理机制
  • 批准号:
    24591127
  • 财政年份:
    2012
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
病原性クラミジアのリンパ球細胞を巧みに利用した感染防御回避機構の解明
阐明巧妙利用致病性衣原体淋巴细胞的感染防御逃避机制
  • 批准号:
    12J03692
  • 财政年份:
    2012
  • 资助金额:
    $ 63.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了