Collaborative Research: ATD: Sequential Quickest Detection and Identification of Multiple Co-dependent Epidemic Outbreaks

合作研究:ATD:多种相互依赖的流行病爆发的顺序最快检测和识别

基本信息

  • 批准号:
    1222262
  • 负责人:
  • 金额:
    $ 21.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

This project is key to the development of next generation quantitative algorithms for detection of epidemic outbreaks. The investigators address two focus problems that arise in epidemic surveillance, namely that of quickest detection of (a) spatially and (b) pathogen heterogeneous outbreaks. An early and accurate response is achieved by taking advantage of the co-dependent nature of the corresponding syndromic observations and by appropriate modeling of this dependency. To this end, the investigators develop innovative online quickest detection and sequential classification techniques to analyze multiple correlated data streams undergoing distinct changes. These techniques are assessed through their ability to optimally issue timely outbreak alerts with minimal false alarm rates. Moreover, the investigators address the problem of early detection and identification of an epidemic outbreak by designing a simultaneous min-max change-point detection and classification algorithm of a single data stream with unknown post-disorder characteristics. In this way, the investigators are able to also address the problem of model uncertainty and build robust algorithms. Finally, the investigators combine their expertise by carrying out a multi-faceted comparison of alternative formulations (especially Bayesian versus min-max) for the focus problems, thus creating a model-free state-of-the-art toolkit targeting highly complex bio-surveillance data.Statistical and mathematical methods are essential to address some of the manifold challenges presented by the threat of infectious epidemics. This project is vital to the improvement of public health infrastructure for effective epidemic countermeasures. The investigators build innovative techniques for the early detection and pathogen-type classification of epidemic outbreaks spanning multiple geographic sites by taking advantage of the co-dependent nature of such outbreaks. The developed methods will be directly communicated to public health epidemiologists through outreach activities. Thus, this project is expected to improve the effectiveness of bio-surveillance and contribute to the health and well-being of our communities at large. The interdisciplinary nature of the research activities assists in the training of graduate and undergraduate students and expands the exchange of ideas between Brooklyn College, the Graduate Center of CUNY and UC Santa Barbara. The PIs? techniques constitute an innovative breakthrough in the general methodology of detection and identification of threats in related but distinct streams of observations. Thus, they provide a state-of-the-art platform for threat detection and classification in other areas of engineering such as communications, network intrusion and others.
该项目是开发用于检测流行病爆发的下一代定量算法的关键。 研究人员解决了流行病监测中出现的两个焦点问题,即最快检测(a)空间和(b)病原体异质性爆发的问题。通过利用相应症状观察的相互依赖性质并通过对这种依赖关系进行适当的建模,可以实现早期且准确的响应。 为此,研究人员开发了创新的在线最快检测和顺序分类技术来分析经历不同变化的多个相关数据流。 这些技术通过其以最小的误报率最佳地及时发出疫情警报的能力进行评估。此外,研究人员通过设计具有未知病后特征的单个数据流的同时最小-最大变化点检测和分类算法,解决了流行病爆发的早期检测和识别问题。 通过这种方式,研究人员还能够解决模型不确定性的问题并构建稳健的算法。最后,研究人员结合他们的专业知识,对焦点问题的替代方案(尤其是贝叶斯与最小-最大)进行多方面比较,从而创建了一个针对高度复杂的生物的无模型的最先进工具包。监测数据。统计和数学方法对于解决传染病流行威胁带来的一些多重挑战至关重要。该项目对于改善公共卫生基础设施、有效应对疫情至关重要。研究人员利用跨多个地理位置的流行病爆发的相互依赖性质,建立了创新技术,用于早期检测和病原体类型分类。开发的方法将通过外展活动直接传达给公共卫生流行病学家。因此,该项目预计将提高生物监测的有效性,并为我们整个社区的健康和福祉做出贡献。研究活动的跨学科性质有助于培养研究生和本科生,并扩大布鲁克林学院、纽约市立大学研究生中心和加州大学圣巴巴拉分校之间的思想交流。 PI?技术构成了在相关但不同的观察流中检测和识别威胁的一般方法的创新突破。因此,它们为通信、网络入侵等其他工程领域的威胁检测和分类提供了最先进的平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Ludkovski其他文献

Extreme Scenario Selection in Day-Ahead Power Grid Operational Planning
日前电网运行规划中的极端场景选择
  • DOI:
    10.48550/arxiv.2309.11067
  • 发表时间:
    2023-09-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillermo Terr'en;Michael Ludkovski
  • 通讯作者:
    Michael Ludkovski
Optimal Dynamic Policies for Influenza Management
流感管理的最佳动态政策

Michael Ludkovski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Ludkovski', 18)}}的其他基金

Collaborative Research: Pacific Alliance for Low-Income Inclusion in Statistics & Data Science
合作研究:太平洋低收入统计联盟
  • 批准号:
    2221421
  • 财政年份:
    2022
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
  • 批准号:
    1821240
  • 财政年份:
    2018
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
AMPS: Collaborative Research: Stochastic Modeling of the Power Grid
AMPS:协作研究:电网随机建模
  • 批准号:
    1736439
  • 财政年份:
    2017
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
  • 批准号:
    1521743
  • 财政年份:
    2015
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Conference on Stochastic Asymptotics and Applications, September 25-27, 2014
随机渐近学及其应用会议,2014 年 9 月 25-27 日
  • 批准号:
    1413574
  • 财政年份:
    2014
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Workshop on Financial Engineering Methods for Insurance Mathematics
保险数学金融工程方法研讨会
  • 批准号:
    0649523
  • 财政年份:
    2007
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了