SEP: Earth-abundant thin-film solar cells as a sustainable solar energy pathway
九月:地球上储量丰富的薄膜太阳能电池作为可持续太阳能途径
基本信息
- 批准号:1230246
- 负责人:
- 金额:$ 190万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Sustainable Energy pathways (SEP) Program, under the umbrella of the NSF Science, Engineering and Education for Sustainability (SEES) initiative, will support the research program of Prof. Yanfa Yan and co-workers at the University of Toledo. The highly multi-disciplinary research team consists of experts in physics, materials science, engineering, chemistry, socioeconomics, environmental science, and education. The objective of the project is to develop the concepts, materials, and processes necessary to economically produce environmentally friendly thin-film solar cells from earth-abundant, environmentally benign (EAEB) materials including FeS2, Cu2S, CuO, Zn3P2 and Cu2ZnSnS4 (CZTS). To achieve high efficiency EAEB solar cells, the research team proposes two new concepts: (1) a bulk homojunction for EAEB inorganic materials that have low carrier mobility and low structural stability (e.g., for FeS2, Cu2S, and CuO) and (2) a hetero-homo dual-junction (HHDJ) for Zn3P2- and CZTS-based thin-film solar cells. The bulk homojunction concept will be realized by assembling nanocrystals (NCs) with surfaces that will be carefully engineered to contain cation-rich domains. Upon assembly, the NCs will form a three-dimensional interconnected network of electron and hole channels that can facilitate charge separation and transfer with minimal efficiency-robbing recombination due to the homojunction topology. The HHDJ will be achieved by accurate control of the junction chemistry using dedicated physical vapor deposition systems with in situ monitoring, including real-time electron impact emission spectroscopy and real-time spectroscopic ellipsometry. The HHDJ concept combines the benefits of the heterojunction and the homojunction: the homojunction minimizes efficiency-robbing recombination while the heterojunction enhances the charge separation and transfer, leading to optimal solar cell performance. The research team will concomitantly develop and analyze the sustainability of our new solar cell systems and manufacturing processes through life cycle tools where life cycle costing (LCC), environmental life cycle assessment (LCA), and social life cycle assessment (SLCA) will be developed simultaneously to create a comprehensive life cycle sustainability assessment (LCSA). To implement LCSA, a new dynamic approach will be used whereby different scenarios will be iteratively modeled to identify the specific interactions of the parameters and, ultimately, the most sustainable scenarios. To address education/workforce development, the research team will target critical educational goals for students at all levels. The research team will also employ an integrative approach wherein students from widely varying backgrounds and fields of expertise will work together to solve complex real world problems. This approach will further reinforce synergy, broaden educational goals, and build a true team philosophy. This project will yield at least two scientific impacts: (1) a thorough understanding of the fundamental science and engineering issues that are critical for realizing a sustainable solar energy pathway using non-toxic and earth-abundant materials, and (2) new science and education paradigms for designing economically, environmentally, and socially sustainable renewable energy and, specifically, solar electricity pathways. By directly integrating the needs of society and industry in developing the materials and engineering technology, this project should serve as a transformational model for the sustainable development of new renewable energy technologies.
NSF的可持续能源道路(SEP)计划在NSF科学,可持续性工程和教育(SEES)倡议的保护下,将支持托莱多大学的扬法·扬教授和同事的研究计划。高度多学科的研究团队由物理,材料科学,工程,化学,社会经济学,环境科学和教育方面的专家组成。 该项目的目的是开发从经济友好的薄膜太阳能电池中产生的概念,材料和过程,这些太阳能电池是从含有地球的,环境良性(EAEB)材料(包括FES2,CU2S,CUO,CUO,ZN3P2和CU2ZNSNS4(CZTS))中产生的。为了达到高效率EAEB太阳能电池,研究团队提出了两个新概念:(1)EAB无机材料的批量同型,具有低载体活动性和低结构稳定性(例如FES2,CU2S和CUO)和(CUO)和(2)型型型型型(Zn3pj),细胞。 批量同义结构的概念将通过将纳米晶体(NCS)组装在一起,以仔细设计以包含阳离子富含阳离子的域。组装后,NCS将形成一个三维互连的电子和孔通道网络,该网络可以促进电荷分离和通过同型拓扑而引起的最小效率重组的转移。 HHDJ将通过使用原位监测的专用物理蒸气沉积系统准确控制结,包括实时电子撞击发射光谱和实时光谱椭圆法。 HHDJ概念结合了异质结和同义结的好处:同型结合最大程度地减少效率重组的重组,而异性结构可以增强电荷分离和转移,从而实现了最佳的太阳能电池性能。研究团队将通过生命周期成本(LCC),环境生命周期评估(LCA)和社交生命周期评估(SLCA)同时开发新的太阳能电池系统和制造过程的可持续性,并通过生命周期工具来开发和分析我们的可持续性。为了实现LCSA,将使用一种新的动态方法,在该方法中,将对不同的方案进行迭代建模,以确定参数的特定相互作用,最终是最可持续的方案。 为了解决教育/劳动力发展,研究团队将针对各级学生的关键教育目标。研究团队还将采用一种综合方法,其中来自不同背景和专业领域的学生将共同解决复杂的现实世界问题。这种方法将进一步增强协同作用,扩大教育目标并建立真正的团队哲学。该项目将至少产生两种科学影响:(1)对使用无毒和地球丰富的材料实现可持续的太阳能通道至关重要的基本科学和工程问题,以及(2)用于在经济,环境,环境和社会可持续可持续的可再生能源和特定的Solare电气的新科学和教育范式。通过将社会和行业的需求直接整合在开发材料和工程技术中,该项目应作为新的可再生能源技术可持续发展的变革型模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells
- DOI:10.1109/jphotov.2017.2768961
- 发表时间:2018-01-01
- 期刊:
- 影响因子:3
- 作者:Celik, Ilke;Philips, Adam B.;Apul, Defne
- 通讯作者:Apul, Defne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanfa Yan其他文献
Optical Hall Effect of PV Device Materials
光伏器件材料的光学霍尔效应
- DOI:
10.1109/jphotov.2018.2869540 - 发表时间:
2018 - 期刊:
- 影响因子:3
- 作者:
Prakash Uprety;Changlei Wang;P. Koirala;Dhurba R. Sapkota;K. Ghimire;Maxwell M Junda;Yanfa Yan;R. Collins;N. Podraza - 通讯作者:
N. Podraza
Ambient Temperature and Pressure Mechanochemical Preparation of Nano-LiTiS2
常温常压机械化学制备纳米LiTiS2
- DOI:
10.1149/2.014201eel - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Thomas A. Yersak;Yanfa Yan;C. Stoldt;Sehee Lee - 通讯作者:
Sehee Lee
Synthesis and Characterization of Magnesium-Alloyed Hematite Thin Films
镁合金赤铁矿薄膜的合成与表征
- DOI:
10.1007/s11664-012-2205-4 - 发表时间:
2012 - 期刊:
- 影响因子:2.1
- 作者:
Houwen Tang;Houwen Tang;Mohammad Matin;Heli Wang;M. Al‐Jassim;J. Turner;Yanfa Yan - 通讯作者:
Yanfa Yan
Environmental performance of integrated solar flow battery systems
集成太阳能液流电池系统的环境性能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:11.1
- 作者:
G. Rodriguez;H. Fu;P. Sullivan;Chih;Zhaoning Song;Jiquan Chen;Yanfa Yan;Dawei Feng;Song Jin;I. Celik - 通讯作者:
I. Celik
Cadmium Selenide (CdSe) as an Active Absorber Layer for Solar Cells with Voc Approaching 750 mV
硒化镉 (CdSe) 作为太阳能电池的活性吸收层,Voc 接近 750 mV
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ebin Bastola;Adam B. Phillips;Abasi Abudulium;Vladislav Kornienko;Zulkifl Hussain;Manoj K. Jamarkattel;Tamanna Mariam;Prabodika N. Kalurachchi;Jared D. Friedl;Dipendra Pokhrel;Kara B. Kile;Zhaoning Song;Yanfa Yan;Michael Walls;R. Ellingson;M. Heben - 通讯作者:
M. Heben
Yanfa Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanfa Yan', 18)}}的其他基金
Lead free organic-inorganic halide perovskite ferroelectrics with large piezoelectric responses
具有大压电响应的无铅有机-无机卤化物钙钛矿铁电体
- 批准号:
1807818 - 财政年份:2018
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
EAGER: TDM Solar Cells: Collaborative Research: Exploration of High Open-Circuit Voltage and Stable Wide-Bandgap Cu2BaSnS4 Solar Cells for Monolithic Tandem Cell Applications
EAGER:TDM 太阳能电池:合作研究:用于单片串联电池应用的高开路电压和稳定宽带隙 Cu2BaSnS4 太阳能电池的探索
- 批准号:
1665028 - 财政年份:2017
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
Thin-Film Compound Semiconductor Photovoltaics
薄膜化合物半导体光伏
- 批准号:
1500903 - 财政年份:2015
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
DMREF: SusChEM: Collaborative Research: Rapid Design of Earth Abundant Inorganic Materials for Future PVs
DMREF:SusChEM:协作研究:快速设计用于未来光伏的地球丰富的无机材料
- 批准号:
1534686 - 财政年份:2015
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
NSF/DOE Solar Hydrogen Fuel: New metal oxides for efficient hydrogen production via solar water splitting
NSF/DOE 太阳能氢燃料:通过太阳能水分解高效生产氢气的新型金属氧化物
- 批准号:
1433401 - 财政年份:2014
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
相似国自然基金
杨柳坪超大型Cu-Ni-PGE矿床硫化物熔体固化过程铂族元素地球化学行为精细研究
- 批准号:42303019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
南海北部“海马”与“F站位”冷泉生物的元素和同位素地球化学特征及其对甲烷来源的示踪
- 批准号:42372161
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
- 批准号:42302189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
- 批准号:42311540014
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
东北森林干扰的生物地球物理效应及其机制解析
- 批准号:42371075
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
CAS: Functionalization of Earth-Abundant, Molecular Group 4 Photosensitizers for Photochemical Applications
CAS:用于光化学应用的地球丰富的 4 分子族光敏剂的功能化
- 批准号:
2349986 - 财政年份:2024
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
Creation of a Membraneless Protocell with Earth-abundant Transition Metal Catalysts
使用地球丰富的过渡金属催化剂创建无膜原始细胞
- 批准号:
24K17795 - 财政年份:2024
- 资助金额:
$ 190万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347912 - 财政年份:2024
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347913 - 财政年份:2024
- 资助金额:
$ 190万 - 项目类别:
Standard Grant
STTR Phase II: Earth-abundant catalyst for power-to-liquids chemical production at the kiloton scale
STTR 第二阶段:地球储量丰富的催化剂,用于千吨级电力转化为液体的化学生产
- 批准号:
2304275 - 财政年份:2024
- 资助金额:
$ 190万 - 项目类别:
Cooperative Agreement