AF: Small: Collaborative Research: The Physics of Markov Chains: Closing the Gap Between Theory and Practice
AF:小:协作研究:马尔可夫链物理学:缩小理论与实践之间的差距
基本信息
- 批准号:1219115
- 负责人:
- 金额:$ 11.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Markov chain Monte Carlo (MC) algorithms are important tools throughout the physical and biological sciences, with applications ranging from simulating new materials to reconstructing phylogenetic trees. They explore a space of states of a physical system, or potential solutions to a problem, by making a series of small changes. One of our main challenges is knowing whether the algorithm has run long enough to reach equilibrium, i.e., if it has spread throughout the space enough to obtain good estimates of important quantities. Here, there is a major divide between theoreticians and practitioners. Physicists use non-rigorous techniques that are much more optimistic than what theorists know how to prove. On the other hand, they are often based on deep ideas about the physical properties of these systems and their asymptotic behavior, and are backed up by numerical experiments. The main theme of the research under this award is to answer the question: how can we bridge the divide between these two camps?The PIs will focus on three areas where stronger bridges can be built. In two-dimensional spin systems, they will use power-law decay of correlations to prove polynomial mixing times at critical points, and to show that we can efficiently "remix from equilibrium" even below phase transitions where worst-case mixing times are exponential. They will give a rigorous understanding of the efficiency of cluster algorithms widely used in physics, which are believed to avoid or reduce the phenomenon of "critical slowing down" as we approach a phase transition. Finally, the PIs will go beyond traditional Markov chain analysis techniques on discrete state spaces, and prove new results on systems whose states are continuous, such as the hard-sphere model in the plane.This work is cross-disciplinary between physics and computer science. MC algorithms also offer an excellent opportunity to involve undergraduates in the research process: they can implement algorithms used in physics and computer science, and gain a "hands-on" feeling for their performance in theory and practice. They can also produce educational applets to let other students, in turn, see these algorithms in action.
马尔可夫链蒙特卡洛(MC)算法是整个物理和生物科学的重要工具,其应用从模拟新材料到重建系统发育树。他们通过进行一系列小变化来探索物理系统状态的空间或问题的潜在解决方案。我们的主要挑战之一是知道该算法是否运行足够长的时间以达到平衡,即是否已经在整个空间中扩散到足以获得重要数量的良好估计值。在这里,理论家和从业者之间存在重大鸿沟。物理学家使用的非鲁情技术比理论家知道如何证明的技术要乐观得多。另一方面,它们通常是基于关于这些系统及其渐近行为的物理特性的深刻想法,并得到数值实验的支持。根据该奖项的研究的主题是回答以下问题:我们如何弥合这两个营地之间的鸿沟?PI将集中在可以建造更强大的桥梁的三个领域。在二维自旋系统中,他们将使用相关性的幂律衰减来证明在临界点上的多项式混合时间,并表明我们可以有效地“从平衡中”有效地“混音”,即使是低于相变低的相变时,最差的案例混合时间是指数的。他们将对广泛用于物理的簇算法的效率进行严格的了解,这些算法被认为避免或减少在接近相变时“临界减速”的现象。最后,PI将超越传统的Markov链分析技术在离散状态空间上,并在状态连续的系统中获得了新的结果,例如飞机中的硬球模型。这项工作是物理学和计算机科学之间的跨学科。 MC算法还提供了一个极好的机会,可以使本科生参与研究过程:他们可以实施物理和计算机科学中使用的算法,并为其在理论和实践中的表现而获得“动手”感觉。他们还可以生产教育小程序,以使其他学生依次看到这些算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hayes其他文献
Is Low Hartmann's (LH) a better procedure than low anterior resection (LAR) for patients with low rectal cancer?
- DOI:
10.1016/j.ijsu.2013.06.209 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:
- 作者:
Thomas Hayes;Wee Sim Khor;Helen Wibberley;Colin Elton;Pawan Mathur - 通讯作者:
Pawan Mathur
P12. A comparison of outcomes between laparoscopic abdominoperineal excision of the rectum (APER) and open procedures
- DOI:
10.1016/j.ejso.2015.08.117 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:
- 作者:
Thomas Hayes;Wee Sim Khor - 通讯作者:
Wee Sim Khor
Time reallocation of physical behaviours induced by endurance exercise in physically active individuals
体力活跃个体耐力运动引起的身体行为的时间重新分配
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.2
- 作者:
Thomas Hayes;Mónica Suárez;J. Galgani;H. Zbinden;R. Fernández - 通讯作者:
R. Fernández
Preservation of the Inferior Mesenteric Artery During Covered Endovascular Reconstruction of the Aortic Bifurcation: A Case Report
- DOI:
10.1016/j.ejvsvf.2021.12.038 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Kerbi Alejandro Guevara-Noriega;Trixie Yap;Thomas Hayes;Mohammed Elnmer;Claudia Sosa-Aranguren;Sanjay Patel;Hany Zayed - 通讯作者:
Hany Zayed
Thomas Hayes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hayes', 18)}}的其他基金
CAREER: Innovations in Markov Chains: Metrics, Duality and Liftings
职业:马尔可夫链的创新:度量、对偶性和提升
- 批准号:
1150281 - 财政年份:2012
- 资助金额:
$ 11.2万 - 项目类别:
Continuing Grant
相似国自然基金
基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
- 批准号:61661005
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
- 批准号:61301143
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
- 批准号:81072465
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
基于小世界网络的传感器网络研究
- 批准号:60472059
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant