CNH: Social-Ecological Complexity and Adaptation in Marine Systems

CNH:海洋系统的社会生态复杂性和适应

基本信息

  • 批准号:
    1211972
  • 负责人:
  • 金额:
    $ 149.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

The oceans are one of the most dynamic environments on Earth, presenting a profound challenge for understanding the complex social, ecological, and physical interactions that occur within them. Fishers are naturally tuned to this complexity and meet their individual goals by targeting their efforts towards particular locations and types of catch, and by adapting their social interactions. Yet we - the scientific community - lack an understanding of how social behavior and ecological dynamics are coupled. Further, these feedbacks are largely ignored in present management approaches. We aim to fill this knowledge gap by answering three questions: (1) How does fisher social behavior (defined as the level to which individual fishers share information) change in response to ecological, technological and management factors? (2) What effect does social behavior have on fisher spatial dynamics and on the social structure of the fishing community? (3) How can management strategies be designed to account for the social behavior of fishers? To answer these questions we will conduct a comprehensive research project involving data gathering and analysis, theoretical modeling and the development of novel mathematical theory. This project will have direct implications for agencies responsible for managing marine resources along the west coast of the U.S. and in Hawaii, some of whom are collaborating in the research. By increasing our understanding of how humans using a natural resource interact with one another and how this in turn affects that resource, the results of this study will be relevant to fields as diverse as finance and global food security. We propose to gather data on the spatial and behavioral dynamics of fishers along the U.S. west coast, in Brazil and in Fiji - three marine systems with contrasting social, ecological, technological and management characteristics. U.S. data will come from collaborations with the NOAA National Marine Fisheries Service, and data from Brazil and Fiji will be obtained using economic field experiments. All three data sources will be used to develop agent-based models that simulate both the dynamics of fish and individual fishers. We will distinguish ourselves from traditional modeling approaches by adopting a Complex Adaptive Systems (CAS) perspective. With a CAS perspective the spatial dynamics of fish and fishers and the social structure of fisher communities, along with other macroscopic properties, emerge from processes operating at low levels of organization, namely the actions of individual fishers and their target species. Our agent-based models will have the CAS perspective at heart, with fisher agents able to adapt and learn different behavioral strategies (e.g. sharing or not sharing information). A combination of variation, fitness and reproduction will create a selective mechanism whereby fisher behaviors converge to evolutionary stable types. We will complement our agent-based modeling with evolutionary game theory and investigate why certain social behaviors are evolutionarily stable in some marine systems and not in others. Last, we will use mechanism design theory to develop management strategies that account for changes in fisher social behavior.
海洋是地球上最具动态的环境之一,对理解其中发生的复杂社会,生态和身体互动构成了深远的挑战。渔民自然会调整这种复杂性,并通过针对特定位置和捕获类型的努力以及调整社交互动来实现他们的个人目标。然而,我们 - 科学界 - 缺乏对社会行为和生态动态如何耦合的理解。此外,在当前的管理方法中,这些反馈在很大程度上被忽略了。我们的目标是通过回答三个问题来填补这一知识差距:(1)渔民社会行为(定义为各个渔民共享信息的水平)如何响应生态,技术和管理因素? (2)社会行为对渔民的空间动态和捕鱼社区的社会结构有何影响? (3)如何设计管理策略来说明渔民的社会行为?为了回答这些问题,我们将进行一个全面的研究项目,涉及数据收集和分析,理论建模以及新型数学理论的发展。该项目将对负责管理美国西海岸和夏威夷海洋资源的机构有直接影响,其中一些人正在研究中合作。通过我们对人类使用自然资源之间如何相互作用以及这又如何影响资源的理解,这项研究的结果将与像财务和全球粮食安全一样多样化有关。我们建议收集有关美国西海岸,巴西和斐济的渔民的空间和行为动态的数据 - 三个具有对比的社会,生态,技术和管理特征的海洋系统。美国的数据将来自与NOAA国家海洋渔业服务的合作,巴西和斐济的数据将使用经济实验实验获得。所有三个数据源将用于开发基于代理的模型,以模拟鱼类和单个渔民的动态。我们将通过采用复杂的自适应系统(CAS)观点来区分传统的建模方法。从CAS的角度来看,鱼类和渔民的空间动态以及渔民社区的社会结构以及其他宏观特性,来自组织低水平的过程,即单个渔民及其目标物种的作用。我们的基于代理的模型将核心CAS视角,Fisher Adents能够适应和学习不同的行为策略(例如共享或不共享信息)。变异,健身和繁殖的结合将创建一种选择性机制,从而使Fisher行为融合到进化稳定类型。我们将通过进化游戏理论对基于代理的建模进行补充,并研究为什么某些社会行为在某些海洋系统中而不是在其他海洋系统中稳定。最后,我们将使用机制设计理论来制定造成Fisher社会行为变化的管理策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Levin其他文献

Valuation and Evaluation : Measuring the Quality of Life and Evaluating Policy
估价和评估:衡量生活质量和评估政策
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Partha Dasgupta;Sean Holly;Simon Levin;Jane Lubchenco;William Peterson
  • 通讯作者:
    William Peterson
Emergent network patterns of internal displacement in Somalia driven by natural disasters and conflicts
自然灾害和冲突造成索马里国内流离失所的新网络模式
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. S. Oh;R. Muneepeerakul;Daniel Rubenstein;Simon Levin
  • 通讯作者:
    Simon Levin

Simon Levin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Levin', 18)}}的其他基金

Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
  • 批准号:
    2327711
  • 财政年份:
    2023
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive physiological controls of trait expression, nutrient allocation, and the elemental stoichiometry of Synechococcus
合作研究:聚球藻性状表达、营养分配和元素化学计量的交互式生理控制
  • 批准号:
    2137340
  • 财政年份:
    2022
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Consequences of Environmental Stochasticity for the Spatial Dynamics of Savanna-Forest Transitions
合作研究:环境随机性对稀树草原-森林转变空间动力学的影响
  • 批准号:
    1951358
  • 财政年份:
    2020
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Continuing Grant
RAPID: Collaborative: Transfer Learning Techniques for Better Response to COVID-19 in the US
RAPID:协作:迁移学习技术以更好地应对美国的 COVID-19
  • 批准号:
    2027908
  • 财政年份:
    2020
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology
探险:合作研究:全球普适计算流行病学
  • 批准号:
    1917819
  • 财政年份:
    2020
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: The Role of Spatial Interactions in Determining the Distribution of Savanna and Forest
合作研究:空间相互作用在确定稀树草原和森林分布中的作用
  • 批准号:
    1615585
  • 财政年份:
    2016
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Apparent competition or anthropogenic over-harvest: hunting in a multi-species context and its impact on species extinctions in Tropical East Asia
论文研究:明显的竞争或人为过度收获:多物种背景下的狩猎及其对热带东亚物种灭绝的影响
  • 批准号:
    1501552
  • 财政年份:
    2015
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
Coastal SEES Collaborative Research: Adaptations of fish and fishing communities to rapid climate change
沿海 SEES 合作研究:鱼类和渔业社区对快速气候变化的适应
  • 批准号:
    1426746
  • 财政年份:
    2014
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
The Evolution of Incentives and Social Structure under Imperfect Information
不完全信息下激励和社会结构的演化
  • 批准号:
    1137894
  • 财政年份:
    2011
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
Dimensions: Collaborative Research: Biological controls on the ocean C:N:P ratios
维度:合作研究:海洋 C:N:P 比率的生物控制
  • 批准号:
    1046001
  • 财政年份:
    2011
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant

相似国自然基金

黑脸噪鹛“种群-家族群-近亲个体”三阶社会体系的生态适应机制研究
  • 批准号:
    32360266
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向空气质量优化的城市社会-生态格局调控和周边区域空气质量协同管控的权衡机制研究
  • 批准号:
    42371106
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
城市群安全公正空间(SJOS)下的社会-生态协同优化机制研究
  • 批准号:
    72304245
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于社会生态理论的儿童过敏性疾病及其健康影响的多维风险因素识别、动态预警及健康管理策略研究
  • 批准号:
    72374059
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
社会-经济-自然协同作用下的闽三角城市群生态风险影响机制和风险管理研究
  • 批准号:
    42307592
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CNH-L: Social-Ecological Dynamics of Recreational Fishery Landscapes
CNH-L:休闲渔业景观的社会生态动力学
  • 批准号:
    1716066
  • 财政年份:
    2017
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
CNH-RCN: Amazon Dams Network: Advancing Integrative Research and Adaptive Management of Social-ecological Systems Transformed by Hydroelectric Dams
CNH-RCN:亚马逊水坝网络:推进水电大坝改造的社会生态系统的综合研究和适应性管理
  • 批准号:
    1617413
  • 财政年份:
    2016
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
CNH-L: Coupled Social and Ecological Consequences of Conservation Easements
CNH-L:保护地役权的社会和生态耦合后果
  • 批准号:
    1518455
  • 财政年份:
    2015
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
CNH: A Social-Ecological Analysis of Nitrogen in Agricultural Systems of the Upper Midwest
CNH:中西部北部农业系统氮的社会生态分析
  • 批准号:
    1612587
  • 财政年份:
    2015
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
NSF CNH-Ex: Pastoralism in Transition: Linking Localized Interactions and System Behavior to Evaluate Social-Ecological Vulnerability
NSF CNH-Ex:转型中的畜牧业:将局部相互作用和系统行为联系起来以评估社会生态脆弱性
  • 批准号:
    1313659
  • 财政年份:
    2013
  • 资助金额:
    $ 149.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了