Applied Matrix Theory and Complex Approximation: Estimating Norms of Functions of Matrices

应用矩阵理论和复近似:估计矩阵函数的范数

基本信息

  • 批准号:
    1210886
  • 负责人:
  • 金额:
    $ 35.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Many questions in applied and computational mathematics, such as questions about the stability of differential or difference equations or questions about the convergence of iterative methods for solving linear systems, are really questions about norms of functions of matrices, such as matrix exponentials or matrix powers. In the case of a real symmetric matrix (or, more generally, a normal matrix), these questions are answered in terms of the matrix eigenvalues, but when the matrix is highly nonnormal (meaning that its eigenvectors are nearly linearly dependent or it does not have a complete set of eigenvectors), eigenvalues tell only part of the story. The asymptotic behavior of powers of matrix exponentials or the matrix itself for large exponents is still determined by the eigenvalues, but transient behavior is not. In this project, the principal investigator will use other sets in the complex plane that can be associated with a matrix, such as the field of values or the epsilon-pseudospectrum, to give more information about the behavior of such matrix functions e.g. for finite powers. In the other direction, new results about the behavior of such matrix functions will lead to new insights into problems in complex approximation theory.This award will support work in the mathematical areas of matrix theory and complex analysis that is fundamental in many application areas in science and engineering. A range of mathematical methods is available for describing the long-term behavior of systems (will a radiation level eventually decay to zero, will flutter in an aircraft eventually die out), but a more crucial question may be what happens in the near-term. While a computer simulation may answer this question for a specific scenario, general results about what determines the transient behavior of such systems are often lacking. This project will provide better mathematical tools for analyzing such questions for a wide class of models. The award will support graduate student training in these areas through research assistantships.
应用数学和计算数学中的许多问题,例如关于微分或差分方程的稳定性的问题或关于求解线性系统的迭代方法的收敛性的问题,实际上是关于矩阵函数的范数的问题,例如矩阵指数或矩阵幂。在实数对称矩阵(或更一般地,正态矩阵)的情况下,这些问题可以根据矩阵特征值来回答,但是当矩阵高度非正态时(意味着其特征向量几乎线性相关或不线性相关)有一套完整的特征向量),特征值只讲述了故事的一部分。矩阵指数幂或大指数矩阵本身的渐近行为仍然由特征值决定,但瞬态行为则不然。在这个项目中,主要研究者将使用复平面中可以与矩阵关联的其他集合(例如值域或 epsilon 伪谱)来提供有关此类矩阵函数行为的更多信息,例如对于有限的权力。另一方面,有关此类矩阵函数行为的新结果将带来对复数逼近理论问题的新见解。该奖项将支持矩阵理论和复数分析数学领域的工作,这在许多科学应用领域中都是基础和工程。有一系列数学方法可用于描述系统的长期行为(辐射水平最终会衰减到零,飞机上的颤振最终会消失),但更关键的问题可能是短期内会发生什么。虽然计算机模拟可以针对特定场景回答这个问题,但通常缺乏决定此类系统瞬态行为的一般结果。该项目将为分析各种模型的此类问题提供更好的数学工具。该奖项将通过研究助学金支持这些领域的研究生培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Greenbaum其他文献

Numerical stability of GMRES
GMRES 的数值稳定性
  • DOI:
    10.1007/bf01732607
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    J. Drkosová;Anne Greenbaum;M. Rozložník;Z. Strakoš
  • 通讯作者:
    Z. Strakoš
2023 Comparison of Some Bounds on Norms of Functions of a Matrix or Operator
2023 矩阵或算子函数范数的一些界的比较
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Greenbaum;Natalie Wellen
  • 通讯作者:
    Natalie Wellen
Near-Optimality Guarantees for Approximating Rational Matrix Functions by the Lanczos Method
Lanczos 方法逼近有理矩阵函数的近最优保证
  • DOI:
    10.48550/arxiv.2303.03358
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noah Amsel;Tyler Chen;Anne Greenbaum;Cameron Musco;Christopher Musco
  • 通讯作者:
    Christopher Musco
Comparison of K-Spectral Set Bounds on Norms of Functions of a Matrix or Operator
矩阵或算子函数范数的 K 谱集界的比较
Numerical bounds on the Crouzeix ratio for a class of matrices
一类矩阵的 Crouzeix 比率的数值界限
  • DOI:
    10.48550/arxiv.2311.13890
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michel Crouzeix;Anne Greenbaum;Kenan Li
  • 通讯作者:
    Kenan Li

Anne Greenbaum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Greenbaum', 18)}}的其他基金

Beyond Eigenvalues - Describing the Behavior of Nonnormal Matrices and Linear Operators
超越特征值 - 描述非正态矩阵和线性运算符的行为
  • 批准号:
    0208353
  • 财政年份:
    2002
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
Preconditioned Interative Methods for Large Linear Systems
大型线性系统的预条件交互方法
  • 批准号:
    9802919
  • 财政年份:
    1998
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
Iterative Methods and Matrix Analysis (Computer Science)
迭代方法和矩阵分析(计算机科学)
  • 批准号:
    9450191
  • 财政年份:
    1994
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
U.S.-Czechoslovakia Mathematics Research on Iterative Methods for Nonsymmetric Linear Systems and Eigenvalue Problems
美捷数学非对称线性系统与特征值问题迭代方法研究
  • 批准号:
    9218024
  • 财政年份:
    1993
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant

相似国自然基金

面向流式数据的在线矩阵压缩方法:理论与应用
  • 批准号:
    62306116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Bourgain–Morrey空间的(加矩阵权)函数空间实变理论及其应用
  • 批准号:
    12371093
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
高维样本相关矩阵离群特征值的渐近理论及其应用
  • 批准号:
    12301339
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
几类约束四元数矩阵方程的求解理论、算法及应用
  • 批准号:
    12271338
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
矩阵酉不变范数不等式的理论及应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Universal approaches in random matrix theory
随机矩阵理论中的通用方法
  • 批准号:
    24K06766
  • 财政年份:
    2024
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
  • 批准号:
    23K20800
  • 财政年份:
    2024
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
  • 批准号:
    2316836
  • 财政年份:
    2023
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Standard Grant
Theory and Practice of Deep Learning Based on Fisher Information Matrix and MDL Principle
基于Fisher信息矩阵和MDL原理的深度学习理论与实践
  • 批准号:
    23H05492
  • 财政年份:
    2023
  • 资助金额:
    $ 35.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了