AF: Medium: Collaborative Research: Sparse Approximation: Theory and Extensions
AF:媒介:协作研究:稀疏逼近:理论与扩展
基本信息
- 批准号:1161151
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past ten years the theoretical computer science, applied math and electrical engineering communities have extensively studied variants of the problem of ``solving" an under-determined linear system. One common mathematical feature that allows us to solve these problems is sparsity; roughly speaking, as long as the unknown vector does not contain too many non-zero components (or has a few dominating components), we can ``solve'' the under-determined system for the unknown vector. These problems are referred to as sparse approximation problems and have applications in diverse areas such as signal and image processing, biology, imaging, tomography, machine learning and others.The proposed research project aims to develop a comprehensive, rigorous theory of sparse approximation, broadly defined. The research proposal entails two complementary research directions: (1) a robust and more complete view of the combinatorial, algorithmic, and complexity-theoretic foundations of sparse approximations (including its generalization to functional sparse approximation where we want to ``solve" for some function of the unknown vector instead of the vector itself),(2) coupled with either its interactions or direct applications in other areas of theoretical computer science, from complexity theory to coding theory, and of electrical engineering, from signal processing to analog-to-digital converters.A general theory of sparse approximation that concentrates both on the optimal tradeoffs between competing parameters and the computational feasibility of attaining such tradeoffs will not only help explore the theoretical limits and possibilities of sparse approximations, but also feed algorithmic techniques and theoretical benchmarks back to its application areas. Sparse approximation already has been shown to have impact in a variety of fields, including imaging and signal processing, Internet traffic analysis, and design of experiments in biology and drug design.
在过去的十年中,理论计算机科学、应用数学和电气工程界广泛研究了“解决”欠定线性系统问题的变体。允许我们解决这些问题的一个常见数学特征是稀疏性;大致而言,简单来说,只要未知向量不包含太多的非零分量(或具有少数主导分量),我们就可以“解决”未知向量的欠定系统,这些问题称为稀疏问题。近似问题并在不同领域有应用例如信号和图像处理、生物学、成像、断层扫描、机器学习等。拟议的研究项目旨在发展一种全面、严格的稀疏逼近理论,该研究提案涉及两个互补的研究方向:(1)a稀疏近似的组合、算法和复杂性理论基础的稳健且更完整的视图(包括其对函数稀疏近似的推广,其中我们想要“求解”未知向量的某些函数而不是向量本身),(2)结合其在理论计算机科学其他领域(从复杂性理论到编码理论)以及电气工程(从信号处理到模数转换器)中的相互作用或直接应用。稀疏的一般理论集中于竞争参数之间的最佳权衡和实现这种权衡的计算可行性的近似不仅有助于探索稀疏近似的理论限制和可能性,而且还将算法技术和理论基准反馈回其应用领域。 稀疏近似已被证明对各个领域都有影响,包括成像和信号处理、互联网流量分析以及生物学和药物设计中的实验设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shanmugavelayu Muthukrishnan其他文献
Shanmugavelayu Muthukrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shanmugavelayu Muthukrishnan', 18)}}的其他基金
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
- 批准号:
1535878 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Dealing Efficiently with Big Social Network Data
BIGDATA:F:DKA:协作研究:有效处理社交网络大数据
- 批准号:
1447793 - 财政年份:2014
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Workshop on Foundations of Algorithms in the Field
现场算法基础研讨会
- 批准号:
1131447 - 财政年份:2011
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
ICES: Small: Auctions and Optimizations in Ad Exchanges
ICES:小型:广告交易中的拍卖和优化
- 批准号:
1101677 - 财政年份:2011
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Approximate Distributed Stream Tracking: Enabling the Next Generation of Data-Streaming Applications
近似分布式流跟踪:支持下一代数据流应用程序
- 批准号:
0414852 - 财政年份:2005
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for sparse data representations
协作研究:稀疏数据表示算法
- 批准号:
0354690 - 财政年份:2004
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
ITR: Sublinear Algorithms for Massive Data Sets
ITR:海量数据集的次线性算法
- 批准号:
0220280 - 财政年份:2002
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402835 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant