Qualitative studies of solutions of nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程解的定性研究
基本信息
- 批准号:1161923
- 负责人:
- 金额:$ 19.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is devoted to qualitative studies of partial differential equations (PDE). Building on recent developments, the principal investigator will study symmetry properties and the nodal structure of nonnegative solutions of elliptic PDE. The main goals are to classify spatial domains on which solutions with nontrivial nodal sets can exist and to determine whether such solutions can exist at all for spatially homogeneous equations. In parabolic equations, a tendency of positive solutions to "improve their symmetry" as time increases to infinity is a remarkable example of how parabolic flows can reduce spatial complexity. The principal investigator will continue his study of this interesting asymptotic symmetry phenomenon, while bearing in mind applications of asymptotic symmetry theorems in convergence results for parabolic equations. Other methods will also be employed to address several long-standing problems concerning the convergence of solutions of parabolic PDE to equilibria. Another topic in this project concerns positive solutions of elliptic PDE on the whole Euclidean space that decay to zero in some variables but do not decay in other variables. The symmetry of the solutions with respect to the decay variables and their behavior with respect to the remaining variables will be examined. The principal investigator will also continue his research concerning Liouville-type theorems on the nonexistence of nontrivial solutions for specific classes of nonlinear equations. Scaling techniques based on Liouville theorems have a wide range of applications in the theory of parabolic PDE, which will be further explored in the project. Results of the above projects will be applied in studies of threshold solutions in various parabolic problems. Such solutions occur as separatrices between solutions exhibiting two different kinds of behavior, such as the decay to zero and blow-up in finite time. They have been studied for purely theoretical reasons as well as in connection with quenching and propagation phenomena in applied sciences.In less technical terms, the project can be characterized as qualitative or geometric analysis of solutions of nonlinear partial differential equations. Such equations are widely used in models in the applied sciences, in particular, chemical engineering, combustion theory, and ecology. Understanding qualitative properties of solutions is important for the internal development of the mathematical theory of partial differential equations as well as for the improvement of their modeling relevance. For the interpretation of models involving nonlinear partial differential equations, rigorous analysis maintains its indispensable role even in presence of the high computing power currently available for numerical analysis. Not only does it provide guidelines for and simplifications of otherwise formidable computations, but in many situations qualitative analysis is the only way to deal with difficult problems concerning general solutions of nonlinear equations. The present project addresses questions that concern geometric properties of solutions (such as their symmetries when viewed as functions of spatial variables) as well as their behavior with respect to time (periodicity properties, stabilization to equilibria, so-called blow-up in finite time). Development of new mathematical techniques for addressing such questions is an integral part of the project.
该项目致力于偏微分方程(PDE)的定性研究。在最新进展的基础上,首席研究员将研究椭圆偏微分方程非负解的对称性和节点结构。主要目标是对可以存在具有非平凡节点集的解的空间域进行分类,并确定对于空间齐次方程是否可以存在这样的解。在抛物线方程中,随着时间增加到无穷大,正解有“改善对称性”的趋势,这是抛物线流如何降低空间复杂性的一个显着例子。首席研究员将继续研究这种有趣的渐近对称现象,同时牢记渐近对称定理在抛物线方程收敛结果中的应用。还将采用其他方法来解决有关抛物线偏微分方程解收敛到平衡点的几个长期存在的问题。该项目的另一个主题涉及整个欧几里德空间上的椭圆偏微分方程的正解,该解在某些变量中衰减到零,但在其他变量中不衰减。将检查解相对于衰减变量的对称性及其相对于其余变量的行为。首席研究员还将继续研究有关特定类别非线性方程不存在非平凡解的刘维尔型定理。基于刘维尔定理的缩放技术在抛物线偏微分方程理论中具有广泛的应用,该项目将进一步探讨这一点。上述项目的成果将应用于各种抛物线问题的阈值解的研究。此类解作为表现出两种不同行为的解之间的分离而出现,例如在有限时间内衰减到零和爆炸。人们对它们进行了纯粹的理论原因以及与应用科学中的猝灭和传播现象相关的研究。用较少的技术术语来说,该项目可以描述为非线性偏微分方程解的定性或几何分析。此类方程广泛应用于应用科学的模型中,特别是化学工程、燃烧理论和生态学。了解解的定性性质对于偏微分方程数学理论的内部发展及其建模相关性的提高非常重要。对于涉及非线性偏微分方程的模型的解释,即使在当前可用于数值分析的高计算能力的情况下,严格分析仍然保持着其不可或缺的作用。它不仅为其他艰巨的计算提供指导和简化,而且在许多情况下,定性分析是处理涉及非线性方程通解的难题的唯一方法。本项目解决的问题涉及解的几何特性(例如,当将其视为空间变量的函数时,它们的对称性)以及它们相对于时间的行为(周期性特性、平衡稳定性、所谓的有限时间内的爆炸) )。开发解决这些问题的新数学技术是该项目的一个组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Polacik其他文献
The parabolic logistic equation with blow-up initial and boundary values
具有爆炸初始值和边界值的抛物线逻辑方程
- DOI:
10.1007/s11854-012-0036-0 - 发表时间:
2012-11 - 期刊:
- 影响因子:1
- 作者:
Yihong Du;Rui Peng;Peter Polacik - 通讯作者:
Peter Polacik
Peter Polacik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Polacik', 18)}}的其他基金
Qualitative Properties of Solutions of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物方程解的定性性质
- 批准号:
1856491 - 财政年份:2019
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
The Twenty-First Riviere Fabes Symposium
第二十一届Riviere Fabes研讨会
- 批准号:
1764282 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Qualitative Studies of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程的定性研究
- 批准号:
1565388 - 财政年份:2016
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Conference: Dynamics and Differential Equations
会议:动力学和微分方程
- 批准号:
1600381 - 财政年份:2016
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Fifteenth Riviere-Fabes Symposium
第十五届Riviere-Fabes研讨会
- 批准号:
1202072 - 财政年份:2011
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Global properties and large-time behavior of solutions nonlinear parabolic equations
非线性抛物型方程解的全局性质和大时间行为
- 批准号:
0900947 - 财政年份:2009
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Eleventh Riviere-Fabes Symposium on Analysis and PDE, April 2008
第十一届 Riviere-Fabes 分析和偏微分方程研讨会,2008 年 4 月
- 批准号:
0801551 - 财政年份:2008
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Qualitative Studies of Parabolic Partial Differential Equations
抛物型偏微分方程的定性研究
- 批准号:
0400702 - 财政年份:2004
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
相似国自然基金
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
- 批准号:72272082
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
激光加速束斑异型化解决方案的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能化运维的工作票挖掘方法研究
- 批准号:61872186
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
解决方案的开发销售、风险管控、质量评估与价值创造研究:制造商与客户综合视角
- 批准号:71702122
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于PI3K抑制剂激活STAT5研究CML对BEZ235耐受的分子机制及解决方案
- 批准号:81500143
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the employment issues of persons with disabilities and exploring the solutions: Focusing on social enterprises
审视残疾人就业问题并探讨解决之道:以社会企业为中心
- 批准号:
18K01851 - 财政年份:2018
- 资助金额:
$ 19.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimal Operation of Irrigation Schemes Based on Viscosity Solutions of Partial Differential Equations
基于偏微分方程粘度解的灌溉方案优化运行
- 批准号:
16KT0018 - 财政年份:2016
- 资助金额:
$ 19.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Socioeconomic Instability and HIV Risk Behavior Among Vulnerable Women
弱势妇女的社会经济不稳定和艾滋病毒危险行为
- 批准号:
8789967 - 财政年份:2014
- 资助金额:
$ 19.8万 - 项目类别:
Gender, Autonomy, and Contraceptive Use Among Young People
年轻人的性别、自主性和避孕药具的使用
- 批准号:
8765156 - 财政年份:2014
- 资助金额:
$ 19.8万 - 项目类别:
Improving Child Behavior Using Task Shifting to Implement MFGs in Child Welfare
通过任务转移改善儿童行为以实施儿童福利中的 MFG
- 批准号:
8803408 - 财政年份:2014
- 资助金额:
$ 19.8万 - 项目类别: