FRG:Collaborative Research: Chemically-active Viscoelastic Mixture Models in Physiology: Formulation, Analysis, and Computation
FRG:合作研究:生理学中的化学活性粘弹性混合物模型:公式、分析和计算
基本信息
- 批准号:1160432
- 负责人:
- 金额:$ 68.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns development and analysis of mathematical models of several complex biological processes, each with major importance to the fundamental and health sciences: cellular blebbing and its role in cellular locomotion through extracellular matrix, platelet deposition and fibrin gelation in arterial blood clotting, mucin secretion and its role in acid transport in the stomach, protein sorting and trafficking by the Golgi apparatus. Although the details of the biology of these processes are vastly different, a common theme is that each involves a complex viscoelastic material mixture whose behavior is determined by the dynamic interplay of mechanics, flow, physical structure, and chemistry. The mathematical description of these processes requires equations describing multiphase flow, the evolution of composition, structure and chemistry, and the relationship between stresses and composition/structure. The solution and analysis of sophisticated models that combine these elements will pose substantial mathematical and computational challenges. To meet these challenges, the investigators will develop and apply advanced numerical algorithms to gain fundamental insights into the mechanisms of function of these important physiological processes. This work will lead to novel and important advances in understanding the essential role of the mechanics and dynamics of complex materials in the function of biological systems. This, in turn, will support improved diagnosis and treatment of a range of serious medical disorders including coronary artery disease, cancer, and metabolic disease. The work will also lead to better understanding of complex materials in general and contribute to the design of novel new materials for meeting pressing technological challenges. Furthermore, the design of new computational algorithms will lead to new capabilities in the use of high-performance computing in science and engineering. The highly interdisciplinary nature of the project will provide many opportunities for training young scientists in the new multi-disciplinary approach to science.Many important physiological processes involve interactions between materials of different types (for example, water and cells or water and polymer gels) and which move relative to one another. The physical interactions between the materials can be strongly influenced by chemical reactions, and the chemical reactions in turn are influenced by the materials' motion and other interactions. Better insight into how such complex systems work and are regulated is critical to understanding these important processes and how they can be manipulated to improve human health. Because these processes are governed by physical and chemical principles and properties, and because these principles and properties can be expressed mathematically, mathematical tools can be brought to bear on these problems. Through mathematical analysis and computational simulations, new insights into the materials' behavior can be developed and a wealth of data can be obtained that complements the data obtainable from traditional laboratory experiments. Hence the combination of mathematical and experimental investigators brought together in this project is expected to lead to significant new insights in important physiological and pathological situations including blood clotting, metabolism, and cancer metastasis. Further the mathematics and computational tools developed in the project will impact the development of non-biological complex materials to meet pressing technological challenges.
该项目涉及几个复杂生物学过程的数学模型的发展和分析,每个模型对基本和健康科学的重要性至关重要:细胞膨胀及其通过细胞外基质,血小板沉积,血小板沉积和纤维蛋白凝胶在细胞运动中的作用,在动脉血块中的纤维蛋白凝胶在动脉血块中的作用,在酸中分类,以及在酸中的作用,以及其在酸中的作用,蛋白质和蛋白质的作用。 尽管这些过程的生物学的细节大不相同,但一个共同的主题是,每个主题涉及复杂的粘弹性材料混合物,其行为由力学,流动,物理结构和化学的动态相互作用决定。 这些过程的数学描述需要描述多相流,组成,结构和化学的演变以及应力与组成/结构之间的关系的方程式。 结合这些元素的复杂模型的解决方案和分析将带来重大的数学和计算挑战。 为了应对这些挑战,研究人员将开发和应用高级数值算法,以获得对这些重要生理过程功能机制的基本见解。 这项工作将导致理解复杂材料在生物系统功能中的力学和动力学的基本作用方面的新颖而重要的进步。 反过来,这将支持改善一系列严重医学疾病在内的诊断和治疗,包括冠状动脉疾病,癌症和代谢疾病。 这项工作还将使一般的复杂材料更好地理解,并有助于设计新型新材料,以应对紧迫的技术挑战。 此外,新计算算法的设计将导致在科学和工程中使用高性能计算的新功能。 该项目的高度跨学科的性质将为培训新的科学培训的年轻科学家提供许多机会。许多重要的生理过程涉及不同类型的材料(例如,水和细胞或水和聚合物凝胶)之间的相互作用,而这些材料相对于彼此而移动。 材料之间的物理相互作用可以受到化学反应的强烈影响,而化学反应反过来又受材料运动和其他相互作用的影响。 更好地了解这种复杂的系统如何工作和受到监管对于理解这些重要过程以及如何操纵它们以改善人类健康至关重要。 由于这些过程受物理和化学原理和特性的控制,并且由于可以用数学上的方式表示这些原理和特性,因此可以将数学工具带来这些问题。通过数学分析和计算模拟,可以开发出对材料行为的新见解,并且可以获得大量数据,以补充可从传统实验室实验获得的数据。 因此,预计该项目中汇集的数学和实验研究者的结合将导致重要的生理和病理状况,包括血液凝结,代谢和癌症转移。 此外,项目中开发的数学和计算工具将影响非生物复杂材料的开发,以应对紧迫的技术挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Fogelson其他文献
Mathematical Modeling to Identify Clotting Factor Combinations That Modify Thrombin Generation in Hemophilia
- DOI:
10.1182/blood-2022-169016 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Michael Stobb;Dougald Monroe;Keith B. Neeves;Suzanne Sindi;Aaron Fogelson;Karin Leiderman - 通讯作者:
Karin Leiderman
Aaron Fogelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Fogelson', 18)}}的其他基金
Collaborative Research: Blood Clotting at the Extreme -- Mathematical and Experimental Investigation of Platelet Deposition in Stenotic Arteries
合作研究:极端血液凝固——狭窄动脉中血小板沉积的数学和实验研究
- 批准号:
1716898 - 财政年份:2017
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant
2008 Theoretical Biology and Biomathematics GRC
2008年理论生物学与生物数学GRC
- 批准号:
0814860 - 财政年份:2008
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant
Formation and Function of Physiological Gels
生理凝胶的形成和功能
- 批准号:
0540779 - 财政年份:2006
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
Focused Research Groups (FRG): The Dynamics of Growing Biogels
重点研究小组 (FRG):生物凝胶生长的动力学
- 批准号:
0139926 - 财政年份:2002
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant
Computational Modeling of Platelet Aggregation and Coagulation and Development of Software for Biofluid Dynamics Problems
血小板聚集和凝血的计算模型以及生物流体动力学问题软件的开发
- 批准号:
9805518 - 财政年份:1998
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Modeling and Computational Simulation of Platelet Aggregation in Large and Small Vessels
数学科学:大小血管中血小板聚集的数学建模和计算模拟
- 批准号:
9307643 - 财政年份:1993
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Modelling, Analysis, and Computational Simulation of Platelet Aggregation in Large and Small Vessels
数学科学:大型和小型血管中血小板聚集的建模、分析和计算模拟
- 批准号:
9104410 - 财政年份:1991
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Computational Modelling of Platelet Aggregation and the Flow of Fluid-Particle Suspensions
数学科学:血小板聚集和流体颗粒悬浮液流动的计算模型
- 批准号:
8803482 - 财政年份:1988
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: A Mathematical and Computational Study of Platelet Adhesion and Aggregation During Blood Clotting
数学科学:血液凝固过程中血小板粘附和聚集的数学和计算研究
- 批准号:
8602166 - 财政年份:1986
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8211323 - 财政年份:1982
- 资助金额:
$ 68.22万 - 项目类别:
Fellowship Award
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 68.22万 - 项目类别:
Standard Grant