GOALI: Multi-scale Optimization for the Design, Capacity Planning and Operation of Power Intensive Process Networks under Uncertain Electricity Prices and Market Demands

GOALI:电价和市场需求不确定下电力密集型过程网络的设计、容量规划和运营的多尺度优化

基本信息

  • 批准号:
    1159443
  • 负责人:
  • 金额:
    $ 30.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

1159443GrossmannSummary: Power intensive industries such as air separation, cement and chlor-alkali manufacturing will face increased electricity prices in the future due to environmental pressures to reduce CO2 emissions. Furthermore, another challenge is that since electricity markets became deregulated in the 1990s, electricity prices have been subject to hourly as well as seasonal variations. These are also likely to become more acute as renewable sources of energy like wind and solar are introduced for power generation. These trends have led to a considerable amount of uncertainty and variability in the daily operating expenses of power intensive industries, which in turn affect their competitiveness and long term planning. The aim of this GOALI proposal, which will be performed in collaboration with researchers from Praxair, is to develop a multi-scale modeling framework that can be used as a decision-making support tool to optimize designs so as to introduce flexibility in plant operations to effectively address uncertain hourly variations in electricity prices and uncertain product demands. In order to tackle the problem of uncertain electricity prices and product demands, we consider as a first step the development of an optimization methodology for the deterministic case when the electricity prices and demands are assumed to be known (e.g. in terms of forecasts). We propose a short-term mixed-integer operational optimization model that is based on offline computations or measured plant data, and that is integrated with the design and long-term capacity planning problem, which involves decisions on installing or upgrading equipment, or increasing storage capacity. To solve the resulting multi-scale mixed-integer linear program (MILP) model for a single plant, we plan to develop a tailored bi-level decomposition algorithm. Also, to consider the case of process networks consisting of several plants, we intend to investigate the solution of the large-scale model with a Lagrangean decomposition scheme based on a novel hybrid cutting plane and subgradient method to accelerate convergence. As a second major step, we will address the treatment of uncertainties of product demands and electricity prices for which we intend to investigate a novel hybrid stochastic programming/robust optimization approach. The basic idea is to model the long-term design decisions and uncertain demands with multistage stochastic programming, and the short term operating decisions and uncertain prices through robust optimization. The proposed models will be tested with process models and real world data of air separation plants supplied by Praxair.Intellectual Merit: The major intellectual challenges in this project lie in the multi-scale integration of the short-term operational model with the design and long-term capacity planning problem, the treatment of uncertainties in product demands and electricity prices, and the development of effective computational algorithms for solving large-scale optimization models. In order to address these challenges, we propose a strategy for multi-scale integration that effectively incorporates the operational model with the design and capacity planning model. Furthermore, we propose decomposition schemes that have the potential of effectively tackling large-scale deterministic models for realistic process networks of power intensive plants, particularly for air separation plants. Finally, we propose a potentially promising hybrid stochastic programming/ robust optimization model and solution method in order to anticipate the effect of uncertainties in the product demands and electricity prices.Broader Impact: The proposed GOALI project has the potential of yielding significant economic savings in the enterprise wide optimization of power intensive industries to make them more competitive. The proposed GOALI project will involve summer internships for the Ph.D. student and visits by the PI to Praxair. The project also has the potential of collaboration and dissemination of the basic methodologies to several petroleum, chemical and engineering/software companies of the Center for Advanced Process Decision-making (CAPD) at Carnegie Mellon. We also intend to collaborate with the Electric Energy Systems Group at Carnegie Mellon. We plan to involve undergraduates for documenting case studies that will be made available through the internet in our cybersite on MINLP. Finally, we also plan to participate in the University outreach program at Carnegie Mellon where we intend to expose high school students to technology on air separation and major issues in operation under fluctuating electricity prices by using simple day-to-day examples like deciding what appliances to turn on and off at their houses if the utilities charged electricity prices that changed on an hourly basis.
1159443Grossmannsummary:由于环境压力减少二氧化碳排放,将来将面临空气分离,水泥和氯 - 阿尔卡利制造等电力密集型行业。 此外,另一个挑战是,由于电力市场在1990年代被放松管制,因此电力价格受到小时和季节性变化的影响。由于引入了诸如风能和太阳能之类的可再生能源,因此它们也可能变得更加敏锐。这些趋势导致了电力密集型行业的日常运营费用的大量不确定性和可变性,这反过来又影响了他们的竞争力和长期计划。该目标提案的目的将与Praxair的研究人员合作执行,是要开发一个多规模建模框架,该框架可以用作决策支持工具,以优化设计,以便在工厂运营中引入灵活性,以有效地解决电力价格价格不确定的小时变量,并且产品需求不确定。为了解决不确定的电价和产品需求的问题,我们认为是为确定性案例的优化方法开发的第一步,当时将电价和需求假定为已知(例如,根据预测)。我们提出了一个基于离线计算或测量工厂数据的短期混合工作优化模型,该模型与设计和长期容量计划问题集成在一起,其中涉及关于安装或升级设备或增加存储容量的决策。为了解决所得的多尺度混合刻机线性程序(MILP)模型,我们计划开发量身定制的双层分解算法。同样,考虑到由几种工厂组成的过程网络的情况,我们打算根据基于新型混合切割平面和亚级别方法来研究大规模模型的解决方案,以加速收敛。作为第二个主要一步,我们将解决对产品需求和电价不确定性的处理,我们打算研究一种新型混合随机编程/强大的优化方法。基本思想是通过多阶段随机编程以及短期运营决策和不确定的价格来对长期设计决策和不确定的需求进行建模。提出的模型将通过Praxair提供的空气分离厂的过程模型和现实世界数据进行测试。智能优点:该项目的主要智力挑战在于短期运营模型与设计和长期容量计划问题的多尺度整合,对不确定性需求和电力价格的不确定性处理的计算算法以及有效的Algorith的开发在不确定性的情况下处理。为了应对这些挑战,我们提出了一种多尺度集成的策略,该策略将操作模型与设计和容量计划模型有效地结合在一起。此外,我们提出的分解方案具有有效地解决电力密集型植物的现实过程网络的大规模确定性模型,特别是对于空气分离植物而言。最后,我们提出了一种潜在有希望的混合随机编程/强大的优化模型和解决方案方法,以预测不确定性在产品需求和电价中的影响。BROADER的影响:拟议的Goali项目具有在企业的广泛优化的电力密集型工业中产生大量经济节省的潜力,以使其更具竞争力。拟议的守门员项目将涉及博士学位的暑期实习。学生和PI访问Praxair。该项目还具有将基本方法的合作和传播给卡内基·梅隆(Carnegie Mellon)高级过程决策中心(CAPD)的几家石油,化学和工程/软件公司。我们还打算与卡内基·梅隆(Carnegie Mellon)的电能系统集团合作。我们计划让本科生记录案例研究,这些案例研究将通过我们在MINLP上的网络网络提供。最后,我们还计划参加卡内基·梅隆(Carnegie Mellon)的大学外展计划,我们打算通过使用简单的日常示例(例如,如果公司在一个小时基础上发生了充电的电力价格,在房屋中开启和关闭的电器,则将高中生的空气分离和运营中的重大问题技术访问。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ignacio Grossmann其他文献

HYPERSCALE MODELING: MOLECULE, PROCESS, ENTERPRISE
超大规模建模:分子、过程、企业
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    André Bardow;Ignacio Grossmann
  • 通讯作者:
    Ignacio Grossmann
A comparative study of continuous-time models for scheduling of crude oil operations in inland refineries
内陆炼厂原油作业调度连续时间模型比较研究
  • DOI:
    10.1016/j.compchemeng.2012.05.009
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuan Chen;Ignacio Grossmann;Li Zheng
  • 通讯作者:
    Li Zheng

Ignacio Grossmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ignacio Grossmann', 18)}}的其他基金

World Congress of Chemical Engineering, Barcelona 2017
世界化学工程大会,巴塞罗那 2017
  • 批准号:
    1741750
  • 财政年份:
    2017
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
GOALI: Optimal Design and Operation of Reliable Process Systems
目标:可靠过程系统的优化设计和运行
  • 批准号:
    1705372
  • 财政年份:
    2017
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Optimization Models for Investment, Operation and Water Management in Shale Gas Supply Chains
页岩气供应链投资、运营和水管理优化模型
  • 批准号:
    1437668
  • 财政年份:
    2014
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Multiobjective Optimization Strategies for the Design of Sustainable Biofuel Processes
可持续生物燃料工艺设计的多目标优化策略
  • 批准号:
    0966524
  • 财政年份:
    2010
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Open Cyberinfrastructure for Mixed-integer Nonlinear Programming: Collaboration and Deployment via Virtual Environments
用于混合整数非线性编程的开放网络基础设施:通过虚拟环境进行协作和部署
  • 批准号:
    0750826
  • 财政年份:
    2008
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
PASI On Emerging Trends in Process Systems Eng.: Sustainability, Energy, Biosystems , Multi-Scale Design Enterprise-Wide Optimization; Mar del Plata, Arg., Aug. 12-21, 2008
PASI 论过程系统工程的新兴趋势:可持续性、能源、生物系统、多尺度设计企业范围优化;
  • 批准号:
    0719635
  • 财政年份:
    2007
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
GOALI: Multiscale Decomposition Techniques for the Integration of Optimal Planning and Scheduling of Batch and Continuous Multiproduct Process Systems
GOALI:用于批量和连续多产品过程系统优化规划和调度集成的多尺度分解技术
  • 批准号:
    0556090
  • 财政年份:
    2006
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Advanced Computational Models for Multistage Stochastic Optimization of Process Systems with Renewable Resources
可再生资源过程系统多级随机优化的高级计算模型
  • 批准号:
    0521769
  • 财政年份:
    2005
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Pan-American Advanced Studies Institute Program on Process Systems Engineering; Iguacu Falls; August 5-14, 2005
泛美高级研究所过程系统工程项目;
  • 批准号:
    0417670
  • 财政年份:
    2005
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Support of Foundations of Computer Aided Process Operations (FOCAPO) 2003 Conference: A View to the Future Integration of R&D, Manufacturing and the Global Supply Chain
支持计算机辅助流程操作基金会 (FOCAPO) 2003 年会议:对 R 未来集成的展望
  • 批准号:
    0213622
  • 财政年份:
    2002
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant

相似国自然基金

大规模多视图数据的代理辅助多目标演化协同聚类研究
  • 批准号:
    62206113
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
大规模多视图数据的代理辅助多目标演化协同聚类研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多应用场景的规模化储能多目标规划方法
  • 批准号:
    U22B20123
  • 批准年份:
    2022
  • 资助金额:
    260.00 万元
  • 项目类别:
    联合基金项目
面向大规模目标遍历访问任务的多航天器飞行序列全局优化方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模目标遍历访问任务的多航天器飞行序列全局优化方法
  • 批准号:
    12102460
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

GOALI: Multi-Scale Characterization and Modeling of Anisotropy and Failure of Aluminum Alloys for Automotive Applications
GOALI:汽车应用铝合金各向异性和失效的多尺度表征和建模
  • 批准号:
    1663269
  • 财政年份:
    2017
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
GOALI: Multi-Scale Deformation and Failure Modeling of Magnesium Alloys for Impact Analysis and Forming Process Simulations
GOALI:镁合金的多尺度变形和失效建模,用于冲击分析和成形过程模拟
  • 批准号:
    1100818
  • 财政年份:
    2011
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
GOALI: Multi-scale Modeling and Advanced Control of Glycosylation in Monoclonal Antibody Production
GOALI:单克隆抗体生产中糖基化的多尺度建模和高级控制
  • 批准号:
    1034213
  • 财政年份:
    2010
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: GOALI: AIS gene library based real-time resource allocation on time-sensitive large-scale multi-rate systems
合作研究:GOALI:时间敏感的大规模多速率系统上基于AIS基因库的实时资源分配
  • 批准号:
    0823952
  • 财政年份:
    2008
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI: AIS gene library based real-time resource allocation on time-sensitive large-scale multi-rate systems
合作研究:GOALI:时间敏感的大规模多速率系统上基于AIS基因库的实时资源分配
  • 批准号:
    0823960
  • 财政年份:
    2008
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了