Collaborative Research: Spatial Cluster Detection Based on Contiguity

合作研究:基于连续性的空间聚类检测

基本信息

  • 批准号:
    1154316
  • 负责人:
  • 金额:
    $ 17.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

The identification of spatial clusters is an important and critical task in many scientific fields. Areas which exhibit a raised incidence of some phenomenon (e.g. disease or crime) are often targeted for increased intervention efforts, such as additional public health safeguards, increased allocations of human resources, or modification to existing public policies to deter negative outcomes. However, the ability to precisely identify significant spatial clusters continues to be challenging. Problems associated with imperfections in spatial data, geographic scale, cluster shape and size, and temporal dynamics often co-mingle to create a somewhat chaotic environment for developing reliable and robust solution approaches. Therefore, while there is no single "best" spatial clustering approach for identifying areas of elevated risk, several techniques, including spatial scan statistics, remain popular and widely used in geography, epidemiology, and criminology for identifying hot spots. This project will develop cutting-edge mathematical and statistical approaches combined with exploratory spatial data analysis techniques to provide a more accurate and precise framework for identifying irregularly shaped spatial clusters for hot spot detection. Specifically, this research will develop more rigorous contiguity and relative contiguity-based spatial cluster detection approaches for identifying clusters with maximum statistical significance while quantitatively tracking their geographic structure. In addition, a suite of innovative diagnostics will be developed to better recognize errors of misidentification, such as missing high-risk units or including extra non-significant units in the detected clusters. The goal is to bring these developed methods to bear on the problem of identifying and assessing spatial clusters over a wide range of spatial scales and application areas.Building upon preliminary research, this team is poised to develop the next generation of spatial clustering approaches and make major advancements to the STEM fields of applied mathematics, operations research, epidemiology, and geographic information science. Further, the substantive components of this project will generate new empirical evidence to help inform local and regional public policy and public health issues regarding alcohol outlets and their relationship to violence and morbidity. Results of this project also support vulnerable populations and places that are socially and economically disenfranchised in two major metropolitan areas (Cincinnati, OH and Philadelphia, PA). Published research and participation in major international conferences, in combination with websites, forums, and sponsored activities hosted by both Drexel and ASU will enable effective dissemination of project results to a wide audience.
在许多科学领域,空间簇的识别是一项重要且至关重要的任务。 表现出某种现象(例如疾病或犯罪)发病率提高的领域通常是针对增加干预工作的目标,例如额外的公共卫生保障措施,增加人力资源的拨款或对现有公共政策的修改以阻止负面结果。 但是,精确识别重要的空间簇的能力仍然具有挑战性。 与空间数据,地理量表,群集形状和大小以及时间动力学相关的缺陷相关的问题通常会共同融合,以创建一个有些混乱的环境,以开发可靠且可靠的解决方案方法。 因此,尽管没有单一的“最佳”空间聚类方法来识别风险升高的领域,但包括空间扫描统计在内的几种技术仍然流行并且广泛用于地理,流行病学和犯罪学来识别热点。 该项目将开发最先进的数学和统计方法与探索性空间数据分析技术相结合,以提供更准确,更精确的框架,用于识别不规则形状的空间簇以进行热点检测。 具体而言,这项研究将开发出更严格的连续性和基于相对连续性的空间群集检测方法,以识别具有最大统计意义的簇,同时定量跟踪其地理结构。 此外,将开发一套创新的诊断套件,以更好地识别错误识别的错误,例如缺少高风险单元或在被检测的簇中包括额外的不显着单位。 The goal is to bring these developed methods to bear on the problem of identifying and assessing spatial clusters over a wide range of spatial scales and application areas.Building upon preliminary research, this team is poised to develop the next generation of spatial clustering approaches and make major advancements to the STEM fields of applied mathematics, operations research, epidemiology, and geographic information science. 此外,该项目的实质性组成部分将产生新的经验证据,以帮助告知当地和区域公共政策以及有关酒精渠道及其与暴力和发病率的关系的公共卫生问题。 该项目的结果还支持在两个主要都会区(俄亥俄州辛辛那提市和宾夕法尼亚州费城)在社会和经济上被剥夺社会和经济上剥夺特权的脆弱人群和地方。 发表研究和参与主要国际会议,结合Drexel和ASU主持的网站,论坛和赞助活动的结合,将使项目结果有效地传播给广泛的受众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tony Grubesic其他文献

A data-driven framework for agent-based modeling of vehicular travel using publicly available data
  • DOI:
    10.1016/j.compenvurbsys.2024.102095
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yirong Zhou;Xiaoyue Cathy Liu;Bingkun Chen;Tony Grubesic;Ran Wei;Danielle Wallace
  • 通讯作者:
    Danielle Wallace

Tony Grubesic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tony Grubesic', 18)}}的其他基金

Collaborative Research: Mitigating Disaster and Terrorism Impacts to Critical Infrastructure
合作研究:减轻灾害和恐怖主义对关键基础设施的影响
  • 批准号:
    1103637
  • 财政年份:
    2010
  • 资助金额:
    $ 17.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mitigating Disaster and Terrorism Impacts to Critical Infrastructure
合作研究:减轻灾害和恐怖主义对关键基础设施的影响
  • 批准号:
    0718091
  • 财政年份:
    2007
  • 资助金额:
    $ 17.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

协作式规划视角下中国城镇老旧小区改造的空间治理机制与模式研究——以海口市为例
  • 批准号:
    42301244
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向靶场炸点的协作式可变基线动态立体视觉空间坐标测量方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向靶场炸点的协作式可变基线动态立体视觉空间坐标测量方法研究
  • 批准号:
    52205548
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
新型城镇化背景下城市更新的协作治理模式及优化策略研究:基于空间利益重构的视角
  • 批准号:
    72174122
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 17.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 17.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 17.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Kermadec Trench --- Residence time, spatial gradients, and insights into ventilation
合作研究:探索克马德克海沟——停留时间、空间梯度和通风见解
  • 批准号:
    2319547
  • 财政年份:
    2023
  • 资助金额:
    $ 17.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了