IDBR: Development of cathodoluminescent near-field energy transfer microscopy for high frame-rate, nanoscale, non-invasive observation of aqueous biodynamics

IDBR:开发阴极发光近场能量转移显微镜,用于水生物动力学的高帧率、纳米级、非侵入性观察

基本信息

  • 批准号:
    1152656
  • 负责人:
  • 金额:
    $ 52.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

IDBR: Development of cathodoluminescent near-field energy transfer microscopy for high frame-rate, nanoscale, non-invasive observation of aqueous biodynamicsThe objective of this project is to develop a high-brightness, rapidly scannable, nanoscale light source appropriate for studying aqueous biological samples at the nanoscale under physiological conditions. Anticipated applications will investigate the dynamics of complexing soluble biomolecules and of heterogeneous lipid membranes. To realize these efforts requires a way to combine the most redeeming elements of electron and light optics: Inside a scanning electron microscope, a focused electron beam will be used to make a nano-optical spot in a thin film scintillator (a material that produces light when struck by electrons). This spot will in turn excite adjacent fluorophores in an encapsulated aqueous sample via highly localized near-field resonant energy transfer. By leveraging the nanoscale resolution and fast scanning of electron microscopy while enabling spectrally selective bio-compatible measurements of aqueous dynamics, this innovation will provide an entirely new way to perform near-field scanning optical microscopy, uninhibited by traditionally cited challenges such as low optical throughput, unwanted tip interactions, and active mechanical stabilization.Achieving tighter focal spots on the order of 10 nm both laterally and axially will revolutionize a host of biophysical fluorescence techniques. The ability to measure single-molecule fluorescence fluctuations at physiological concentrations up to a million times greater than traditional fluorescence correlation spectroscopy (FCS) will yield a much needed way to study binding and enzyme catalysis in the regime where complexes are stable. This has important implications in the understanding of diseases such as Alzheimer's and in the formation of molecular machinery such as the ribosome. The enabling of fluorescence recovery after photobleaching (FRAP) diffusion measurements on membranes that are themselves smaller than the diffraction limit, as is the case for example in the impressively crowded grana of plant chloroplasts, will reveal organizational heterogeneity and local variations in mobility that have yet to be uncovered, as other super-resolution microscopies are not compatible with FRAP. These spectrally selective studies at the nanoscale will literally provide a window into the inner workings of biomolecular interactions and will connect the high-level function of complex biomaterials with their nanoscopic origins.The developed platform will comprise optical detection in a standard scanning electron microscope (SEM), and a nanofabricated liquid cell that will both safely house the aqueous sample in vacuum and include a thin film scintillating window to convert an electron beam into a highly-localized optical field for sample illumination. The work will be performed at two different SEMs, both residing in shared facilities. In one case, the PI's group will train all new SEM users, and will offer assistance in teaching them to use the developed nano-optical capabilities. The PI's group will mentor the facility's volunteer undergraduates in the development of different nano-scintillators for use in the microscopy. The second SEM is in a national facility that has no associated user fees, and is positioned to provide a broad user base with exposure to the developed technology. Beyond these facilities, the technology will become easily reproducible as an accessible extension that others institutions will wish to incorporate into their pre-existing SEM facilities, broadening their user base to include more users in the life sciences. In undergraduate course material, the PI will use examples from this research project to highlight how physical principles are incorporated into real world biological research. The PI also promotes the participation of women and other minorities in science, as a frequent guest speaker for women's students groups in the natural sciences, and the PI's research group members participate in classroom visits to neighboring elementary schools through the Community Resources for Science Community in the Classroom program.
IDBR:开发阴极发光近场能量转移显微镜,用于高帧率、纳米级、非侵入性观察水体生物动力学该项目的目标是开发一种高亮度、可快速扫描的纳米级光源,适合研究水体生物样品在生理条件下在纳米尺度上。预期的应用将研究复合可溶性生物分子和异质脂质膜的动力学。为了实现这些努力,需要一种将电子和光学光学最有价值的元素结合起来的方法:在扫描电子显微镜内,聚焦电子束将用于在薄膜闪烁体(一种产生光的材料)中形成纳米光学点当被电子撞击时)。该点将通过高度局部的近场共振能量转移依次激发封装的水性样品中的相邻荧光团。通过利用电子显微镜的纳米级分辨率和快速扫描,同时实现水动力学的光谱选择性生物相容性测量,这项创新将提供一种全新的近场扫描光学显微镜方法,不受传统上提到的低光学通量等挑战的影响、不必要的尖端相互作用以及主动机械稳定。在横向和轴向上实现 10 nm 左右的更紧密的焦点将彻底改变许多生物物理荧光技术。在生理浓度下测量单分子荧光波动的能力比传统荧光相关光谱(FCS)高一百万倍,这将为研究复合物稳定状态下的结合和酶催化提供一种急需的方法。这对于理解阿尔茨海默病等疾病以及核糖体等分子机制的形成具有重要意义。在本身小于衍射极限的膜上进行光漂白后荧光恢复 (FRAP) 扩散测量(例如在植物叶绿体中令人印象深刻的拥挤基粒中的情况)将揭示组织异质性和流动性的局部变化。由于其他超分辨率显微镜与 FRAP 不兼容,因此这一问题有待发现。这些纳米尺度的光谱选择性研究实际上将为了解生物分子相互作用的内部运作提供一个窗口,并将复杂生物材料的高级功能与其纳米起源联系起来。开发的平台将包括标准扫描电子显微镜(SEM)中的光学检测),以及一个纳米制造的液体池,该液体池既可以在真空中安全地容纳水性样品,又包括一个薄膜闪烁窗,可将电子束转换为高度局部化的光场以用于样品照明。这项工作将在两个不同的 SEM 中进行,两者都位于共享设施中。在一种情况下,PI 的团队将培训所有新的 SEM 用户,并为教他们使用已开发的纳米光学功能提供帮助。 PI 的小组将指导该设施的志愿本科生开发用于显微镜的不同纳米闪烁体。第二个 SEM 位于国家设施内,不收取任何相关用户费用,旨在为广泛的用户群提供接触所开发技术的机会。除了这些设施之外,该技术将作为一种可访问的扩展而变得易于复制,其他机构希望将其纳入其现有的 SEM 设施中,从而扩大其用户群以包含更多生命科学领域的用户。在本科课程材料中,PI 将使用该研究项目中的示例来强调如何将物理原理纳入现实世界的生物研究中。 PI 还促进妇女和其他少数群体参与科学,作为自然科学领域女学生团体的常客演讲者,PI 的研究小组成员通过科学社区的社区资源参与到邻近小学的课堂参观。课堂计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naomi Ginsberg其他文献

Naomi Ginsberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

秦岭生态效益转化与区域绿色发展模式
  • 批准号:
    72349001
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
血小板内皮聚集受体1在常染色体显性遗传性多囊肾病发生发展中的作用及机制研究
  • 批准号:
    82300799
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FERMT2/DDX3X信号轴促进胰腺癌发生发展的作用及机制研究
  • 批准号:
    82372605
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
  • 批准号:
    32371366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
O-GlcNAc糖基化修饰稳定YTHDC1蛋白促进胶质母细胞瘤发展的机制研究
  • 批准号:
    82303835
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Studentship
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Studentship
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
  • 批准号:
    2349311
  • 财政年份:
    2025
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Continuing Grant
SoundDecisions - Musical Listening, Decision Making, And Equitable Development In The Mekong Delta
SoundDecisions - 湄公河三角洲的音乐聆听、决策和公平发展
  • 批准号:
    EP/Z000424/1
  • 财政年份:
    2025
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Research Grant
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
  • 批准号:
    EP/Z001013/1
  • 财政年份:
    2025
  • 资助金额:
    $ 52.19万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了