CAREER: Stochastic and Robust Variational Inequality Problems: Analysis, Computation and Applications to Power Markets

职业:随机和鲁棒变分不等式问题:分析、计算及其在电力市场中的应用

基本信息

  • 批准号:
    1151138
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-01-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The research objective of this Faculty Early Career Development (CAREER) project is to develop an analytical and algorithmic framework for addressing variational inequality (VI) problems under uncertainty. Variational inequality problems can accommodate an expansive range of problems, including optimization problems, Nash games and equilibrium problems. Yet, there is limited understanding of how to incorporate uncertainty in such problems. The proposed research intends to fill this gap by considering two extensions: (1) stochastic variational inequality (SVI) problems, which generalize VIs by replacing the mapping with its expected-value counterpart; and (2) robust variational inequality (RVI) problems, where robust solutions to VIs are obtained by parameterizing uncertainty in the feasible solution set and the mapping. In the context of each problem, the proposed research will be aggregated around two thrusts: (i) analysis and (ii) computation. As part of (i), tractable integration-free characterization statements will be developed, including those pertaining to the existence, uniqueness and stability of the associated solutions. Additionally, extensions accommodating nonconvexity will also be investigated. In the context of (ii), the proposed research will investigate the development of adaptive step-size stochastic approximation schemes implementable over possibly evolving networks, as well as globally convergent and scalable decomposition schemes.If successful, this project will lead to new and enhanced tools for the design and operation of networked systems, complicated by uncertainty, nonlinearity, nonsmoothness and competition, as arising in transportation, telecommunications and energy sectors. More specifically, this research will lead to robust and reliable power markets, effected through ongoing interactions with the independent system operator in New England (ISO-NE). The project incorporates a comprehensive education plan aggregated around high-school discovery courses, undergraduate research projects and graduate-level seminars and will be accompanied by efforts toward increasing diversity through student advising and mentoring.
该教师早期职业发展(CAREER)项目的研究目标是开发一个分析和算法框架,用于解决不确定性下的变分不等式(VI)问题。变分不等式问题可以解决广泛的问题,包括优化问题、纳什博弈和均衡问题。 然而,对于如何将不确定性纳入此类问题的理解有限。拟议的研究旨在通过考虑两个扩展来填补这一空白:(1)随机变分不等式(SVI)问题,它通过用其期望值对应物替换映射来概括 VI; (2) 鲁棒变分不等式 (RVI) 问题,其中 VI 的鲁棒解是通过参数化可行解集和映射中的不确定性来获得的。在每个问题的背景下,拟议的研究将围绕两个主旨进行汇总:(i)分析和(ii)计算。作为 (i) 的一部分,将开发易于处理的免积分表征陈述,包括与相关解决方案的存在性、唯一性和稳定性有关的陈述。此外,还将研究适应非凸性的扩展。 在(ii)的背景下,拟议的研究将调查可在可能演化的网络上实现的自适应步长随机逼近方案的开发,以及全局收敛和可扩展的分解方案。如果成功,该项目将带来新的和增强的用于设计和操作网络系统的工具,由于运输、电信和能源领域出现的不确定性、非线性、非平滑性和竞争而变得复杂。更具体地说,这项研究将通过与新英格兰独立系统运营商(ISO-NE)的持续互动来实现强大而可靠的电力市场。该项目包含围绕高中发现课程、本科研究项目和研究生研讨会的综合教育计划,并将同时通过学生建议和指导来增加多样性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uday Shanbhag其他文献

Uday Shanbhag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uday Shanbhag', 18)}}的其他基金

6th INFORMS Simulation Society Research Workshop; University Park, Pennsylvania; June 22-24, 2020
第六届INFORMS模拟学会研究研讨会;
  • 批准号:
    1939336
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Nash Equilibrium Problems under Uncertainty
合作研究:不确定性下的纳什均衡问题
  • 批准号:
    1538193
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Commitment, Expansion, and Pricing in Uncertain Power Markets: Discrete Hierarchical Models and Scalable Algorithms
合作研究:不确定电力市场中的承诺、扩展和定价:离散层次模型和可扩展算法
  • 批准号:
    1408366
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Resolving Parametric Misspecification: Joint Schemes for Computation and Learning
解决参数错误指定:计算和学习的联合方案
  • 批准号:
    1400217
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Stochastic and Robust Variational Inequality Problems: Analysis, Computation and Applications to Power Markets
职业:随机和鲁棒变分不等式问题:分析、计算及其在电力市场中的应用
  • 批准号:
    1246887
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Addressing Competition, Dynamics and Uncertainty in Optimization Problems: Theory, Algorithms, Applications and Grid-Computing Extensions
解决优化问题中的竞争、动态和不确定性:理论、算法、应用和网格计算扩展
  • 批准号:
    0728863
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于光子晶体光纤随机光栅阵列的动态准分布式矢量磁场传感研究
  • 批准号:
    62375029
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
源于随机行人碰撞事故边界反求的头部损伤评价准则及风险预测
  • 批准号:
    52372348
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
随机时变相位低相干宽带激光抑制受激拉曼散射的动理学研究
  • 批准号:
    12305265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Hierarchical Robust Stochastic Control for a Flexible and Sustainable Power Supply
职业:用于灵活和可持续电源的分层鲁棒随机控制
  • 批准号:
    2236843
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic and Robust Variational Inequality Problems: Analysis, Computation and Applications to Power Markets
职业:随机和鲁棒变分不等式问题:分析、计算及其在电力市场中的应用
  • 批准号:
    1246887
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Robust Trajectory Based Analysis for Stochastic Hybrid Systems Abstraction and Verification
职业:基于稳健轨迹的随机混合系统抽象和验证分析
  • 批准号:
    0953976
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A Study of Stochastic and Robust Integer Programming: Algorithms, Computations and Applications
职业:随机和鲁棒整数规划研究:算法、计算和应用
  • 批准号:
    0942156
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: A Study of Stochastic and Robust Integer Programming: Algorithms, Computations and Applications
职业:随机和鲁棒整数规划研究:算法、计算和应用
  • 批准号:
    0748204
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了