Friction Control by Adsorption of Polyelectrolyte-Grafted Nanoparticles

通过吸附聚电解质接枝纳米粒子来控制摩擦

基本信息

  • 批准号:
    1133175
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

CBET-1133175P.I.: Tilton, Robert D.Intellectual Merit:This work provides a new boundary lubricating system together with new understanding of how molecular structure and intermolecular forces combine to minimize friction in nanostructured organic/inorganic composite systems. It therefore embodies both technological and scientific novelty. Prior fundamental research has shown that polyelectrolyte brushes grafted on solid surfaces greatly diminish adhesion and friction between those surfaces. Brushes are descriptively named layers of densely packed polymer chain molecules attached by one end to a surface. The chains stretch tens of nanometers away from the surface to form a protective coating that resists impact by other surfaces. Polyelectrolytes are polymers that have electrical charge, and this charge strengthens chain stretching and surface protection characteristics. A critical challenge is that existing methods for creating brushes have shortcomings that limit their uses in engineering applications. In order to realize the potential of boundary lubrication by polyelectrolyte brushes, this work will provide a fundamentally new way to deploy such brushes in practical systems. Poly(2-(dimethylamino)ethyl methacrylate) polyelectrolyte brushes will be grafted from silica nanoparticles at high, controlled grafting densities and controlled degrees of polymerization. These grafted nanoparticles will serve as pre-formed brush elements. By suspending them in the liquid phase bathing the surfaces to be lubricated, they will adsorb onto those surfaces and create stable brush coatings, piece by piece, to minimize friction. Unlike other methods for creating dense polyelectrolyte brushes, this approach can be applied to many different material types and geometries and also offers the novelty of self-healing after surface damage. Optimizing this new lubrication system motivates specific research aims that represent novel engineering science. Since there is no precedent for this approach, experiments are designed to reveal its mechanisms for friction control. The research plan will provide a multi-scale, quantitative structure versus activity relationship spanning from the conformation and ionization of nanoparticle-grafted polyelectrolyte chains to the multiparticle organization of surface layers and finally to the friction coefficient between coated surfaces. The work uses state of the art methods atom transfer radical polymerization to create grafted polyelectrolyte brushes and colloidal probe force microscopy to measure friction as a function of load.Broader Impacts:One Ph.D., one M.S. and several undergraduate students will receive research education through this project. The Ph.D. student will benefit from an international collaboration experience with researchers in Stockholm. Discovery-based science lessons on friction and lubrication will be developed with an elementary science teacher and disseminated through teacher training networks. The research project will produce effective water-based lubrication agents that exploit the low friction properties of polyelectrolyte brushes in a practical manner that cannot be achieved with current methods of brush formation. This will lead to new water-based lubricants to be used as machining fluids, for example. Machining fluids tend to be atomized into the workplace air. Because they would replace hydrocarbons with water, new water-based machining fluids would have lower occupational health risks and environmental impacts. Because of its inherently flexible mode of application, this lubrication strategy may also enable new microelectromechanical system (MEMS) technologies that currently are limited by friction and adhesion between ultraminiaturized moving parts. With further work, the basic principles developed here can be translated in the future to new oil-based lubricants to improve engine wear and fuel efficiency.
CBET-1133175P.I.:蒂尔顿,罗伯特 D.智力优点:这项工作提供了一种新的边界润滑系统,以及对分子结构和分子间力如何结合以最大限度地减少纳米结构有机/无机复合系统中的摩擦的新理解。因此,它体现了技术和科学的新颖性。先前的基础研究表明,接枝在固体表面上的聚电解质刷大大减少了这些表面之间的粘附和摩擦。刷子是描述性命名的一层致密的聚合物链分子,其一端附着在表面上。 这些链从表面延伸数十纳米,形成保护涂层,抵抗其他表面的冲击。聚电解质是带有电荷的聚合物,这种电荷增强了链拉伸和表面保护特性。一个关键的挑战是现有的画笔创建方法存在缺陷,限制了它们在工程应用中的使用。为了实现聚电解质刷边界润滑的潜力,这项工作将为在实际系统中部署此类刷提供一种全新的方法。聚(2-(二甲基氨基)乙基甲基丙烯酸酯)聚电解质刷将以高的、受控的接枝密度和受控的聚合度从二氧化硅纳米粒子接枝。这些接枝的纳米颗粒将用作预成型的刷子元件。通过将它们悬浮在液相中,浸入待润滑的表面,它们将吸附在这些表面上,并逐片形成稳定的刷涂层,以最大限度地减少摩擦。与创建致密聚电解质刷的其他方法不同,这种方法可以应用于许多不同的材料类型和几何形状,并且还提供了表面损伤后自我修复的新颖性。 优化这种新型润滑系统激发了代表新颖工程科学的具体研究目标。 由于这种方法没有先例,因此设计了实验来揭示其摩擦控制机制。该研究计划将提供多尺度、定量的结构与活性关系,从纳米颗粒接枝聚电解质链的构象和电离到表面层的多颗粒组织,最后到涂层表面之间的摩擦系数。这项工作使用最先进的原子转移自由基聚合方法来制造接枝聚电解质刷,并使用胶体探针力显微镜来测量摩擦力与负载的函数关系。 更广泛的影响:一名博士、一名硕士。多名本科生将通过该项目接受研究教育。博士学位。学生将受益于与斯德哥尔摩研究人员的国际合作经验。关于摩擦和润滑的基于发现的科学课程将与一名基础科学教师共同开发,并通过教师培训网络进行传播。该研究项目将生产有效的水基润滑剂,以实际的方式利用聚电解质刷的低摩擦特性,这是当前刷形成方法无法实现的。 例如,这将导致新型水基润滑剂被用作加工液。加工液往往会雾化到工作场所的空气中。由于新型水基加工液会用水代替碳氢化合物,因此职业健康风险和环境影响较低。 由于其固有的灵活应用模式,这种润滑策略还可以实现新的微机电系统(MEMS)技术,这些技术目前受到超小型运动部件之间的摩擦和粘附的限制。 通过进一步的工作,这里开发的基本原理将来可以转化为新型油基润滑剂,以改善发动机磨损和燃油效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Tilton其他文献

Robert Tilton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Tilton', 18)}}的其他基金

Marangoni Transport Synergism in Mixed Surfactant Systems
混合表面活性剂体系中的马兰戈尼传输协同作用
  • 批准号:
    1705432
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Synergistic or Antagonistic Effects of Polymer/Surfactant Supramolecular Assembly on the Colloidal Depletion Force
聚合物/表面活性剂超分子组装体对胶体消耗力的协同或拮抗作用
  • 批准号:
    1608003
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Equilibrium and Dynamics of Polymer-Grafted Nanoparticles at Fluid Interfaces
聚合物接枝纳米粒子在流体界面的平衡和动力学
  • 批准号:
    1332836
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Interfacial Activity of PEG-modified Proteins with Application to Sustained Release
PEG 修饰蛋白质的界面活性及其在缓释中的应用
  • 批准号:
    0755284
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
High Efficiency Nanoparticulate Emulsifiers
高效纳米颗粒乳化剂
  • 批准号:
    0729967
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NIRT: Targeted Delivery and Microbial Interactions of Polymer-Functionalized Nanoparticles for Groundwater Contaminant Source-Zone Remediation
NIRT:用于地下水污染物源区修复的聚合物功能化纳米颗粒的靶向输送和微生物相互作用
  • 批准号:
    0608646
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Surfactant Mobilization of Adsorbed Polymer and its Effect on the Severity of Co-Adsorption Hysteresis
吸附聚合物的表面活性剂迁移及其对共吸附滞后严重程度的影响
  • 批准号:
    0625135
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of a Copolymer-Based System for Targeted Delivery of Nanoparticulate Iron to Environmental Non-Aqueous Phase Liquids
开发一种基于共聚物的系统,用于将纳米颗粒铁靶向输送到环境非水相液体中
  • 批准号:
    0521721
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
U.S.-Germany Cooperative Research: Structural Dynamics and Control of Non-Equilibrium Polymer Layers
美德合作研究:非平衡聚合物层的结构动力学与控制
  • 批准号:
    0217721
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Elucidating Structure Versus Function Relationships for Adsorbed Enzyme Layers
阐明吸附酶层的结构与功能关系
  • 批准号:
    9907504
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

电位响应型CO2吸附剂构筑及吸脱附过程控制研究
  • 批准号:
    22308234
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
银吸附原子催化剂的结构控制及氧还原反应催化机理研究
  • 批准号:
    52373302
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
MXene边缘二维过渡金属硫化物的可控制备及其对室温钠硫电池中多硫化物的吸附转化机制研究
  • 批准号:
    52302301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
吸附速率对煤层中CO2注入效率的控制机理
  • 批准号:
    42272210
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
多孔液体的电子束辐照可控制备及其微结构与CO2吸附性能构效关系的正电子湮没研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Non-coating anti-microbial, anti-host protein deposition, anti-inflammatory urinary catheter
无涂层抗菌、抗宿主蛋白沉积、抗炎导尿管
  • 批准号:
    10697567
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Non-coating anti-microbial, anti-host protein deposition, anti-inflammatory urinary catheter
无涂层抗菌、抗宿主蛋白沉积、抗炎导尿管
  • 批准号:
    10697567
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
  • 批准号:
    10528938
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
  • 批准号:
    10668497
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
RUI: Chemically Modified Enzymes to Control Adsorption on Gold Nanoparticles for Enhanced Structure/Function
RUI:化学修饰酶控制金纳米粒子上的吸附以增强结构/功能
  • 批准号:
    2203740
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了