EAGER: Collecting Training Videos for Location Estimation with Mechanical Turk

EAGER:使用 Mechanical Turk 收集用于位置估计的培训视频

基本信息

项目摘要

Location-based services are rapidly gaining traction in the online world as they allow highly personalized services and easier retrieval and organization of multimedia. However, such services require accurate geolocation information (geo-tags) to be associated with the multimedia data e.g., videos. Because only a small fraction of available video data is geo-tagged. Hence, there is a growing interest in systems that estimate the geolocation of a given video automatically that does not include geo-location metadata. While machine learning offers a potential approach to training automatic location estimators, it requires a standardized training corpus of geo-tagged videos. Automatic collection of videos introduces a bias toward videos that are easily processible by machines and towards geographical locations that are over-represented in current corpora. Hence there is a need for carefully curated standard data sets. This EArly-concept Grants for Exploratory Research (EAGER) project explores a novel, somewhat high risk, approach to collecting such an annotated training corpus of geo-tagged videos using Mechanical Turk (http://www.mturk.com), a "marketplace for work" for engaging workers with the desired expertise from around the world to work on a specific task, in this case, participating in a game that involves annotating videos with geolocation metadata e.g., GPS coordinates. The user interface for the game will allow participants to estimate the location of videos by clicking on a map. The knowledge gained from this EAGER would set the stage for more comprehensive geotagged multimedia data collection efforts. The resulting data sets and benchmarks will be made available to the research community to enable detailed and systematic comparative analysis of alternative methods (e.g., machine learning algorithms for predicting geolocation information from videos). The availability of standardized geo-tagged multimedia data sets will help drive advances in machine learning techniques for geo-location prediction. The resulting advances in geo-tagging multimedia data would enable intelligent location based services and a variety of domains including law enforcement, personalized and location-aware media retrieval, for a variety of applications including journalistic and criminal investigations.
基于位置的服务在在线世界中迅速获得了吸引力,因为它们允许高度个性化的服务以及更容易的多媒体检索和组织。但是,此类服务需要准确的地理位置信息(地理标签)与多媒体数据相关联,例如视频。因为只有一小部分可用的视频数据被GEO标记。因此,对系统自动估算给定视频的地理位置的系统越来越感兴趣,该系统不包括地理位置元数据。 当机器学习提供了一种潜在的培训自动位置估计器的方法,但它需要标准化的地理标签视频培训语料库。自动收集视频引入了对视频的偏见,这些视频很容易被机器处理,并且朝着当前语料库中代表过多的地理位置进行处理。因此,需要精心策划的标准数据集。 This EArly-concept Grants for Exploratory Research (EAGER) project explores a novel, somewhat high risk, approach to collecting such an annotated training corpus of geo-tagged videos using Mechanical Turk (http://www.mturk.com), a "marketplace for work" for engaging workers with the desired expertise from around the world to work on a specific task, in this case, participating in a game that involves annotating videos with地理位置元数据,例如GPS坐标。游戏的用户界面将允许参与者通过单击地图估算视频的位置。从这种渴望中获得的知识将为更全面的地理标记多媒体数据收集工作奠定了基础。最终的数据集和基准将提供给研究社区,以实现替代方法的详细和系统的比较分析(例如,用于预测视频中的地理位置信息的机器学习算法)。标准化地理标记的多媒体数据集的可用性将有助于推动地理位置预测的机器学习技术的进步。地理多媒体数据的最终进展将为包括新闻和刑事调查在内的各种应用程序提供基于智能位置的服务以及包括执法,个性化和位置感知媒体检索在内的各种领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerald Friedland其他文献

SRI-Sarnoff AURORA System at TRECVID 2013 Multimedia Event Detection and Recounting
SRI-Sarnoff AURORA 系统参加 TRECVID 2013 多媒体事件检测和重算
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingen Liu;Hui Cheng;O. Javed;Qian Yu;Ishani Chakraborty;Weiyu Zhang;Ajay Divakaran;H. Sawhney;James Allan;R. Manmatha;John Foley;Mubarak Shah;Afshin Dehghan;Michael Witbrock;Jon Curtis;Gerald Friedland
  • 通讯作者:
    Gerald Friedland
Protecting health care workers: the critical role of airborne infection control.
保护医护人员:空气传播感染控制的关键作用。
Antiretroviral Prophylaxis of Health Care Workers at Two Urban Medical Centers
两个城市医疗中心医护人员的抗逆转录病毒预防
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Russi;Martha I. Buitrago;J. Goulet;D. Calello;James Perlotto;D. van Rhijn;E. Nash;Gerald Friedland;W. Hierholzer
  • 通讯作者:
    W. Hierholzer
Adherence, compliance, and HAART.
依从性、依从性和 HAART。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    RN Ann Williams;Gerald Friedland
  • 通讯作者:
    Gerald Friedland
Investigating Social Network as Complex Network and Dynamics of User Activities
研究社交网络作为复杂网络和用户活动的动态
  • DOI:
    10.5120/ijca2015905952
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hradesh Kumar;Sanjeev Kumar Yadav;Khanh Nguyen;D. Tran;Pinghui Wang;Wenbo He;Junzhou Zhao;Darren Quinn;Liming Chen;Maurice Mulvenna;R. Farahbakhsh;Xiao Han;Angel Cuevas;Noel Crespi;R. Serra;M. Villani;Luca Agostini;Fabrício Benevenuto;Tiago Rodrigues;Meeyoung Cha;Virgilio Almeida;Aniket Mahanti;Niklas Carlsson;A. Mahanti;M. Arlitt;Oana Goga;Howard Lei;S. Parthasarathi;Gerald Friedland;Putu Wuri Handayani
  • 通讯作者:
    Putu Wuri Handayani

Gerald Friedland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerald Friedland', 18)}}的其他基金

CI-P: Planning for AudioNet: A New Community Infrastructure for Audio Annotations for Acoustic Event Identification
CI-P:规划 AudioNet:用于声学事件识别的音频注释的新社区基础设施
  • 批准号:
    1629990
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EDU: Teachers' Resources for Online Privacy Education (TROPE)
EDU:在线隐私教育教师资源 (TROPE)
  • 批准号:
    1419319
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Commercializing the Integration of Human and Artificial Intelligence for Large Scale Multimedia Analysis
I-Corps:将人类和人工智能集成商业化以进行大规模多媒体分析
  • 批准号:
    1339552
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
BIGDATA: Small: DCM: DA: Collaborative Research: SMASH -- Scalable Multimedia content AnalysiS in a High-level language
大数据: 小: DCM: DA: 协作研究: SMASH - 使用高级语言进行可扩展多媒体内容分析
  • 批准号:
    1251276
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

经颅超声无线能量收集器件及其深脑神经调控应用研究
  • 批准号:
    12304512
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自供能半主动调谐质量阻尼器的振动能量收集与减震机理研究
  • 批准号:
    52308526
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“类液润滑-超亲水”图案化PDMS分子刷设计及其长效水汽收集机理研究
  • 批准号:
    22305192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
构筑具有超快水分子传输通道的晶态多孔有机盐及大气水收集应用研究
  • 批准号:
    22305223
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
自养/异养条件下单细胞藻类的絮凝/降解/收集问题驱动的动力学建模与理论和数值分析
  • 批准号:
    12371481
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Decoding Viral Control of Host Kinase Signaling to Design Combination Therapy
解码病毒对宿主激酶信号传导的控制以设计联合疗法
  • 批准号:
    10449933
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Engineering scalable collecting duct networks for functional kidney tissue
为功能性肾组织设计可扩展的集合管网络
  • 批准号:
    10674480
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Estrogen regulation of age and PTSD-associated changes in macrophage-induced neuroinflammation during HIV infection.
HIV 感染期间巨噬细胞诱导的神经炎症中雌激素对年龄和 PTSD 相关变化的调节。
  • 批准号:
    10707319
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Developing distributed learning algorithms for convolutional neural networks: a novel method for training deep learning models without sharing and collecting data
开发卷积神经网络的分布式学习算法:一种无需共享和收集数据即可训练深度学习模型的新方法
  • 批准号:
    546140-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Postdoctoral Fellowships
Engineering scalable collecting duct networks for functional kidney tissue
为功能性肾组织设计可扩展的集合管网络
  • 批准号:
    10536752
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了