Spatial and Temporal Complexity in Disordered Strongly Correlated Electronic Systems
无序强相关电子系统中的时空复杂性
基本信息
- 批准号:1106187
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:Novel materials with strong electronic correlations can lead to spontaneous electronic pattern formation and complexity at the nanoscale. Understanding the formation of these patterns may be a key to our understanding of the macroscopic electronic properties and to our eventual technological control of these materials. The PI will use techniques from disordered and glassy systems to determine the fundamental physics governing the nanoscale pattern formation. Broader impacts include mentoring graduate women in physics, outreach to high schools, and the training of graduate students. While there is growing consensus that many strongly correlated electronic systems are highly susceptible to pattern formation at the nanoscale, unfortunately most of our theoretical and experimental tools are designed for understanding and detecting homogeneous phases of matter. The PI will design and develop new ways of understanding, detecting, and characterizing electronic pattern formation in strongly correlated electronic systems at the nanoscale, especially in the presence of strong disorder effects. The PI will employ techniques from the study of glasses and disordered phases both in and out of equilibrium with the aim to determine the fundamental physics governing the nanoscale pattern formation, as well as how the macroscopic behavior that arises from novel nanoscale structure. A goal of the research is that several conventional and widely available experimental techniques will include new modes of the way data is acquired and its analysis and new theoretical tools that enable the detection and characterization of novel phases of matter.The PI will continue to develop the mentoring program she began for graduate women in the physics program at her home institution. The PI will visit local high schools to discuss her research. This outreach combines interactive hands-on superconductivity demonstrations with education about current condensed matter research. In addition, the proposed work will advance the training of one graduate student. NONTECHNICAL SUMMARY:This award supports theoretical research and education on the complex pattern formation which has been observed to occur among the electrons in an interesting class of materials that include high-temperature superconductors and colossal magnetoresistance materials. Useful conceptualizations of electronic states in many materials are often based on the idea that electronic states inside the material are uniform. The electronic states in ordinary metal wires, in semiconductors and in some magnets are examples. High temperature superconductors have emerged as examples that break this paradigm in a new way. The electrons themselves form intricate patterns inside the materials. This kind of clumpy behavior among the electrons may hold the key to some of the exotic properties which have been observed in the larger class of strongly correlated materials. The name reflects the role of strong interactions among electrons leading to correlations in their motions. Of specific interest to the PI are technologically important properties such as high temperature superconductivity, which may have impact on technologies to increase energy efficiency, and colossal magnetoresistance materials which exhibit an amazingly large change in resistance to electric current flow when placed in a magnetic field. Some examples of this pattern formation are also fractal in character, meaning that the patterns simultaneously incorporate similar structural details at small, medium, and large length scales.Current theoretical and experimental techniques are inadequate for detecting or classifying the clumpy behavior of the electrons inside these materials. The PI will design and develop new ways of understanding, detecting, and characterizing electronic pattern formation in these strongly correlated materials on the length scales of atoms and molecules. In order to accomplish this, the PI will use techniques from the study of glasses such as window glass and other disordered materials with an aim to determine the fundamental physics responsible for the complex pattern formation of the electrons inside these materials. A possible outcome of this research is that several conventional and widely available experimental techniques will have at their disposal new modes of data acquisition and analysis and new concepts that will enable the detection and characterization of new inhomogeneous phases of matter. This project also supports training one graduate student, mentoring graduate women in physics, and outreach to local high schools which combines interactive hands-on superconductivity demonstrations with education about the PI's current research in condensed matter physics.
技术摘要:具有强电子相关性的新型材料可以导致自发的电子图案形成和纳米级的复杂性。了解这些图案的形成可能是我们理解宏观电子特性以及最终对这些材料进行技术控制的关键。 PI 将使用无序和玻璃态系统的技术来确定控制纳米级图案形成的基本物理原理。 更广泛的影响包括指导物理学领域的女研究生、向高中推广以及研究生培训。尽管人们越来越认识到许多强相关的电子系统非常容易受到纳米尺度图案形成的影响,但不幸的是,我们的大多数理论和实验工具都是为理解和检测物质的均质相而设计的。 PI 将设计和开发新的方法来理解、检测和表征纳米级强相关电子系统中的电子图案形成,特别是在存在强无序效应的情况下。 PI 将采用研究处于平衡状态和非平衡状态的玻璃和无序相的技术,旨在确定控制纳米级图案形成的基本物理原理,以及新型纳米级结构如何产生宏观行为。 该研究的目标是几种传统且广泛使用的实验技术将包括数据获取方式及其分析的新模式以及能够检测和表征物质新相的新理论工具。PI将继续开发她为她所在机构物理项目的女研究生启动了指导计划。 PI 将访问当地高中讨论她的研究。该活动将互动式超导实践演示与当前凝聚态物质研究的教育结合起来。 此外,拟议的工作将促进一名研究生的培训。非技术摘要:该奖项支持对复杂图案形成的理论研究和教育,这种复杂图案已被观察到在一类有趣的材料(包括高温超导体和巨大磁阻材料)中的电子之间发生。许多材料中电子态的有用概念通常基于材料内部电子态是均匀的这一想法。 普通金属线、半导体和某些磁体中的电子态就是例子。 高温超导体已经成为以新方式打破这一范式的例子。电子本身在材料内部形成复杂的图案。 电子之间的这种团块行为可能是在更大类别的强相关材料中观察到的一些奇异特性的关键。这个名字反映了电子之间强烈相互作用导致其运动相关性的作用。 PI 特别感兴趣的是技术上重要的特性,例如高温超导性,它可能对提高能源效率的技术产生影响,以及巨大的磁阻材料,当置于磁场中时,其对电流的阻力会表现出惊人的巨大变化。 这种图案形成的一些例子在特征上也是分形的,这意味着这些图案同时在小、中和大长度尺度上包含相似的结构细节。当前的理论和实验技术不足以检测或分类这些图案内电子的团块行为。材料。 PI 将设计和开发新的方法来理解、检测和表征这些强相关材料中原子和分子长度尺度上的电子图案形成。 为了实现这一目标,PI 将使用玻璃研究技术,例如窗玻璃和其他无序材料,旨在确定导致这些材料内电子复杂图案形成的基础物理原理。 这项研究的一个可能结果是,几种传统且广泛使用的实验技术将拥有新的数据采集和分析模式以及新概念,从而能够检测和表征物质的新非均匀相。 该项目还支持培训一名研究生、指导物理学领域的女性研究生,以及向当地高中进行推广,将交互式超导实践演示与 PI 目前在凝聚态物理方面的研究相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erica Carlson其他文献
Low energy spin waves and magnetic interactions in SrFe2As2.
SrFe2As2 中的低能自旋波和磁相互作用。
- DOI:
10.1103/physrevlett.101.167203 - 发表时间:
2008-08-18 - 期刊:
- 影响因子:8.6
- 作者:
Jun Zhao;D. Yao;Shiliang Li;T. Hong;Ying Chen;Sung Chang;William D. Ratcliff;J. W. Lynn;H. A. Mook;G. Chen;Jianlin Luo;Nanlin Wang;Erica Carlson;Jiangping Hu;Pengcheng Dai;Pengcheng Dai - 通讯作者:
Pengcheng Dai
Random Field Driven Spatial Complexity at the Mott Transition in VO(2).
VO(2) 中莫特转变处的随机场驱动空间复杂性。
- DOI:
10.1103/physrevlett.116.036401 - 发表时间:
2015-02-18 - 期刊:
- 影响因子:8.6
- 作者:
Erica Carlson;Shuo Liu;B. Phillabaum;K. Dahmen;Narsimhamurthy Vidhyadhiraja;M. M. Qazilbash;Dimitri Basov - 通讯作者:
Dimitri Basov
Classical Phase Fluctuations in High Temperature Superconductors
高温超导体中的经典相涨落
- DOI:
10.1103/physrevlett.83.612 - 发表时间:
1999-02-04 - 期刊:
- 影响因子:8.6
- 作者:
Erica Carlson;S. Kivelson;V. J. Emery;E. Manousakis - 通讯作者:
E. Manousakis
Noise predictions for STM in systems with local electron nematic order
局部电子向列序系统中 STM 的噪声预测
- DOI:
10.1103/physrevb.81.224207 - 发表时间:
2009-03-18 - 期刊:
- 影响因子:3.7
- 作者:
Yen Lee Loh;Yen Lee Loh;Erica Carlson;K. Dahmen - 通讯作者:
K. Dahmen
Erica Carlson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erica Carlson', 18)}}的其他基金
Electronic Fractals in Strongly Correlated Quantum Materials
强相关量子材料中的电子分形
- 批准号:
2006192 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Decoding Spatial Complexity in Strongly Correlated Electronic Systems
解码强相关电子系统中的空间复杂性
- 批准号:
1508236 - 财政年份:2015
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Using Disorder to Detect Local Order: Noise and Nonequilibrium Effects of Stripes in the Presence of Quenched Disorder
使用无序检测局部有序:存在淬灭无序时条纹的噪声和非平衡效应
- 批准号:
0804748 - 财政年份:2008
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
相似国自然基金
NLK-FoxO1-GPX4信号轴调控软骨细胞铁死亡促进颞下颌关节骨关节炎进展的机制研究
- 批准号:82301113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
透软骨阳离子纳米载体修复颞下颌关节髁突软骨的机制研究
- 批准号:82301112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
拷贝数突变致良性癫痫伴中央颞区棘波语言障碍的认知心理学及神经影 像学研究
- 批准号:82371201
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
熊果酸通过靶向调控Reelin改善慢性颞叶癫痫和认知损伤的机制研究
- 批准号:82360711
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
负压诱导下自体外周血单核细胞来源的凋亡囊泡对颞下颌关节骨关节炎的临床治疗研究
- 批准号:82370985
- 批准年份:2023
- 资助金额:70 万元
- 项目类别:面上项目
相似海外基金
Impact of Medicare Polices on Beneficiaries with ADRD
医疗保险政策对 ADRD 受益人的影响
- 批准号:
10728582 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Spatial complexity of cardiac cell culture and spatial-temporal bioelectric activity: granularity and mechanical-electrical feedback.
心脏细胞培养的空间复杂性和时空生物电活动:粒度和机电反馈。
- 批准号:
RGPIN-2020-05758 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Spatial complexity of cardiac cell culture and spatial-temporal bioelectric activity: granularity and mechanical-electrical feedback.
心脏细胞培养的空间复杂性和时空生物电活动:粒度和机电反馈。
- 批准号:
RGPIN-2020-05758 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Spatial complexity of cardiac cell culture and spatial-temporal bioelectric activity: granularity and mechanical-electrical feedback.
心脏细胞培养的空间复杂性和时空生物电活动:粒度和机电反馈。
- 批准号:
RGPIN-2020-05758 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Spatial complexity of cardiac cell culture and spatial-temporal bioelectric activity: granularity and mechanical-electrical feedback.
心脏细胞培养的空间复杂性和时空生物电活动:粒度和机电反馈。
- 批准号:
RGPIN-2020-05758 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual