Graduate Student and Postdoctoral Conference on Applied Inverse Problems
应用反问题研究生和博士后会议
基本信息
- 批准号:1112902
- 负责人:
- 金额:$ 3.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal seeks funding for junior researchers to attend the large, biennial meeting on mathematical inverse problems; the Applied Inverse Problems (AIP) conference. The meeting will be held on the campus of Texas A&M University, May, 23-27, 2011. There will also be a pre-conference workshop, specifically tailored to give graduate students and postdocs critical background material. As expected from the conference title, there is an emphasis on applications and most talks will be motivated directly by questions in the physical, biological and engineering sciences. This makes this a "not-to-be-missed" meeting, especially for the junior researcher, and this proposal seeks travel funding to permit graduate student and postdoc attendance. This will have significant broader impact as it exposes US junior researchers to state-of-the-art applications and mathematical techniques in a rapidly expanding area that has considerable technological importance for the health, economic welfare and security of the nation. AIP-2011 is the sixth in a series of biennial meetings that are intended to be the comprehensive scientific conference for the area of inverse problems in partial differential equations and applications. In addition to the 12 plenary talks, there will also be approximately 40 minisymposia plus contributed sessions and poster sessions. The intent of the meeting is to achieve a balance among analysis, computation and modeling for applications.The field of inverse problems has grown enormously within the last decade. While the underlying model may be a partial differential equation, mathematical, computational and statistical tools are required that go far beyond this basis. One consequence of this is the demand put on a researcher to have broad-based expertise and this particularly impacts beginning researchers. For example, imaging is a ubiquitous tool in the modern world and the mathematical models arising from various modalities give rise to inverse problems. While the familiar CAT scan comes from the Radon transform and gave rise to the field of (x-ray) tomography, modern imaging is extremely complex. It not only uses different parts of the electromagnetic spectrum (which have very different absorption and resolution properties) but also can involve longitudonal waves such as sound, or as is now common, hybrid versions to optimize against the twin evils of diffusion and lack of resolution. While many of these methods have differential equations as their basis, reconstruction techniques require intensive computational analysis and statistical methods to optimize data use. Even this sub-field has become so broad that no one individual can be expert on all aspects. For this reason AIP-2011 will feature a pre-conference workshop primarily intended for graduate students and postdocs that will take place immediately prior to the main meeting. The workshop will feature 10 talks from 5 well-known experts and will cover many of the basic tools that will be required for an understanding of the more in-depth talks of the meeting itself. These include analytic/geometrical methods, Baysian techniques, inverse scattering, regularization techniques and tomographic methods in imaging. Funding from this award will also allow attendance at the workshop and this in itself will have a broad educational impact in an area that is critical for the technological growth of the nation.
该提案为初级研究人员寻求资金参加数学反问题的大型,两年一次的会议。应用的反问题(AIP)会议。 会议将于2011年5月23日至27日在德克萨斯A&M大学校园举行。还将举行会议前研讨会,专门针对研究生和博士后的关键背景材料量身定制。 正如会议标题所预期的那样,重点是应用程序,大多数谈话将直接受到物理,生物学和工程科学中的问题的动机。这使得这是“不可能失踪的”会议,尤其是对于初级研究人员而言,该提议寻求旅行资金以允许研究生和博士后出席。 这将产生更大的影响,因为它使美国初级研究人员在快速扩展的领域中使用最新的应用和数学技术,这对国家的健康,经济福利和安全具有相当大的技术重要性。 AIP-2011是一系列两年一次的会议中的第六次,该会议旨在是针对部分微分方程和应用中反向问题领域的综合科学会议。 除了12次全体会议之外,还将有大约40个小型肢体加上贡献和海报会议。 会议的目的是在应用程序的分析,计算和建模之间达到平衡。在过去的十年中,反问题的领域已经大大增长。 虽然基础模型可能是部分微分方程,但需要数学,计算和统计工具远远超出此基础。 结果是,研究人员的需求是具有广泛的专业知识,这尤其影响了初学者的研究人员。 例如,成像是现代世界中普遍存在的工具,而多种方式引起的数学模型会导致反向问题。 虽然熟悉的猫扫描来自ra的变换,并引起了(X射线)断层扫描的领域,但现代成像非常复杂。 它不仅使用电磁光谱的不同部分(具有非常不同的吸收和分辨率),而且还可以涉及纵向波,例如声音,或者现在常见的是,混合版本可以优化针对扩散和分辨率缺乏分辨率的双重邪恶。 尽管其中许多方法具有微分方程为基础,但重建技术需要密集的计算分析和统计方法来优化数据使用。 即使是这个子场变得如此广泛,以至于没有人能在各个方面成为专家。 因此,AIP-2011将举办会议前研讨会,主要是针对主要会议之前将在主要会议前举行的研究生和博士后的。 该研讨会将展出来自5位知名专家的10次演讲,并将涵盖许多基本工具,以了解会议本身更深入的讨论。 这些包括分析/几何方法,贝斯技术,反向散射,正则化技术和成像中的层析成像方法。 该奖项的资金还将允许参加研讨会,这本身将对国家技术增长至关重要的领域产生广泛的教育影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Rundell其他文献
William Rundell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Rundell', 18)}}的其他基金
Inverse Problems for Nonlinear Partial Differential Equations
非线性偏微分方程的反问题
- 批准号:
2111020 - 财政年份:2021
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Analysis and Computation for Inverse Problems in Differential Equations
微分方程反问题的分析与计算
- 批准号:
1620138 - 财政年份:2016
- 资助金额:
$ 3.29万 - 项目类别:
Continuing Grant
Uniqueness and Reconstructions Methods for Inverse Problems
反问题的唯一性和重构方法
- 批准号:
1319052 - 财政年份:2013
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Reconstruction algorithms for inverse obstacle problems
逆障碍问题的重构算法
- 批准号:
0715060 - 财政年份:2007
- 资助金额:
$ 3.29万 - 项目类别:
Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
- 批准号:
9707930 - 财政年份:1997
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Mathematical Sciences:Reconstructions Methods for Inverse Problems in Multiple Dimensions
数学科学:多维反问题的重构方法
- 批准号:
9501030 - 财政年份:1995
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Mathematical Sciences: Multidimensional Reconstruction Methods for Inverse Problems
数学科学:反问题的多维重构方法
- 批准号:
9202352 - 财政年份:1992
- 资助金额:
$ 3.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Inverse Problems in Differential Equations: Computational Algorithms; March 10-14, 1991, College Station, Texas
数学科学:微分方程反问题会议:计算算法;
- 批准号:
9015637 - 财政年份:1991
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Mathematical Sciences Research Scientist
数学科学研究科学家
- 批准号:
9103519 - 财政年份:1991
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:
8804590 - 财政年份:1988
- 资助金额:
$ 3.29万 - 项目类别:
Standard Grant
相似国自然基金
液相硝酸铵体系棕色碳光化学生成机制及对大气氧化性的影响
- 批准号:22376029
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向大学生价值观引导的智能算法分发信息服务方法与机制研究
- 批准号:72304090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
精准碱基编辑的化学生物学研究
- 批准号:22337001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
MUC15通过整合素调控胰腺癌细胞迁移和侵袭的力学生物学机制
- 批准号:12372316
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于机器学习的大学生自杀风险识别研究
- 批准号:32300917
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
2023 Carbohydrates Gordon Research Conference and Gordon Research Seminar
2023年碳水化合物戈登研究会议暨戈登研究研讨会
- 批准号:
10682774 - 财政年份:2023
- 资助金额:
$ 3.29万 - 项目类别:
2023 Inhibition in the CNS Gordon Research Conference and Gordon Research Seminar
2023年中枢神经系统戈登研究会议和戈登研究研讨会的抑制
- 批准号:
10683610 - 财政年份:2023
- 资助金额:
$ 3.29万 - 项目类别: