A mineral-physics based model of mantle electrical conductivity

基于矿物物理学的地幔电导率模型

基本信息

项目摘要

Many of the tectonic processes expressed at Earth's surface are themanifestation of processes rooted deeper within the planet. Variations intemperatures and composition of the upper mantle (the layer below thecrust) combined with the forces that drive motion contribute to thedeformation patterns at the surface and/or melt generation (possiblyresulting in volcanoes). Models of the mantle further our understandingof the evolution of these processes, but these models require accurateestimates of temperature and composition of the upper mantle---neitherof which can be measured directly. To estimate the state of the mantle,geophysical models of a physical property sensitive to temperature andcomposition are typically used as a proxy (e.g. seismic velocity and electricalconductivity). Using electrical conductivity as a proxy requireslaboratory measurements on minerals at a range of conditions expectedfor the mantle. Most interpretations of upper mantleelectrical conductivity are based only on the mineral olivine,which comprises 60-70% of the mantle, and often ignore the possibleinfluence of the remaining mineral components. While olivine typicallydominates the electrical conductivity, there are cases, particularlywhen bound water content is high, where electrical conductivitycontributions from orthopyroxene and clinopyroxene, the next mostabundant upper mantle minerals, may be disproportionate to their volume.This project will involve the collection of electrical conductivity onmantle pyroxenes in a laboratory controlled setting over a wide range ofphysical conditions, leading to an improved model of dry pyroxeneconductivity. This model will help improve current,and aid in future, interpretations of mantle conductivity models and theprocesses that potentially drive melt generation and surface dynamics.This project will also include the building of a conductivity apparatusthan can be used in future studies as well as the training of a postdoc.There have been few electrical conductivity studies on orthopyroxene andfewer on clinopyroxene. While they suggest anhydrous conductivity oforthopyroxene is similar to that of olivine, with clinopyroxene about oneorder of magnitude lower, they were conducted along predetermined oxygenfugacity paths, thus limiting their application to specific conditions. This projectwill focus on the collection of electrical conductivity and thermopowermeasurements on mantle derived pyroxenes over a wide range oftemperatures and oxygen fugacities relevant to the mantle. Bycollecting thermopower measurements in tandem with electricalconductivity at several oxygen fugacity states and temperatures itwill be possible to estimate the concentration and mobility of thevarious charge carriers and build point defect models that extendconductivity estimates to a much larger range of mantle conditions. Asimilar model for olivine has become a standard for comparison withlaboratory experiments and repeatedly verified in recent experiments.In the past few years there has been a great deal of attention paid tothe effect of water on olivine conductivity. However, water partitioningexperiments show that pyroxenes may hold ten times as much bound H2O asolivine. Apart from contributing to bulk composition, pyroxenites (rockswith 50% pyroxene) are found regionally in veins which are important tothe geochemical budget, and may be responsible for the "garnetsignature" in mid-ocean ridges and ocean island basalts. If such veinsform interconnected networks they would have a disproportionate effecton mantle conductivity. A reliable anhydrous pyroxene conductivitymodel developed as part of this study will aid interpretation of futureelectrical conductivity experiments on hydrous pyroxenes, as well as improve the interpretation of mantle conductivities inferred fromelectromagnetic sounding.
在地球表面表达的许多构造过程都是植根于行星内深处的过程的侵占。 上地幔的变化构成和组成(下方的层)结合了驱动运动的力,有助于表面和/或熔体产生(可能在火山中呈现)。 地幔的模型进一步了解了这些过程的演变,但是这些模型需要准确地估计上地幔的温度和组成 - 既不能直接测量。 为了估计地幔的状态,通常将对温度和重点敏感的物理特性的地球物理模型用作代理(例如地震速度和电导率)。 使用电导率作为代理需要在预期地幔预期的一系列条件下对矿物进行详细测量。 上地幔电导率的大多数解释仅基于矿物橄榄石,该矿物橄榄石占地幔的60-70%,并且通常忽略其余矿物质成分的可能性。 虽然橄榄石通常会降低电导率,但在某些情况下,尤其是绑定的水分含量很高,而从正pypyroxene和Clinopyroxene产生的电导率构造是下一个最重要的上地幔矿物质,这可能与它们的体积不成比例。这些项目将涉及对电导率的收集,从而使电导率遍及一定范围,该范围是在层次上构成的,该阶段是在层次上,构造了一个范围的范围,该阶段是构造的,构成了层次的范围。改善了干pyroxeneconconductivity的模型。 该模型将有助于改善当前的电导率模型和可能推动融化产生和表面动力学的过程的解释。该项目还将包括在未来的研究中使用电导率Aptaratusthan,以及对多核后的培训。几乎没有对Orthopyroxene和Feweroxene on Clinepoyroderroxene上的电导率研究。 虽然它们认为非拷贝性无水电导率与橄榄石相似,而斜二烯二级级较低,但它们沿预先确定的氧气路径进行,从而限制了它们在特定条件上的应用。 该项目将重点关注在与地幔相关的广泛范围的植物和氧气中,对地幔衍生的吡喃烯的收集电导率和热燃量的收集。 通过在几个氧赋形性状态下以电导率和电导率进行串联的热电器测量,可以估计变化荷载体的浓度和迁移率,并构建点缺陷模型,以扩展到扩展到更大范围的地幔条件。 橄榄石的不含量模型已成为与实验室实验进行比较的标准,并在最近的实验中反复验证。在过去的几年中,人们非常关注水对橄榄石电导率的影响。 但是,水分隔离量表表明,辉石可能持有的H2O ASOLIVINE的十倍。 除了有助于散装成分之外,在静脉区域发现了辉石(Rockswith 50%辉石),这是重要的地球化学预算,并且可能是中山山脊和海洋岛玄武岩中的“石榴石签名”。 如果这样的静脉互连网络,它们将具有不成比例的效应地幔电导率。 作为这项研究的一部分开发的可靠无水辉石电导率模型将有助于解释对含水辉石的未来电导率实验,并改善对地幔电导率的解释,这些地幔导率推断出源自电磁声音。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Constable其他文献

Steven Constable的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Constable', 18)}}的其他基金

Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334542
  • 财政年份:
    2024
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Magnetotelluric Investigation of the Salton Trough
合作研究:索尔顿海槽的大地电磁调查
  • 批准号:
    2243695
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
Collaborative research: A better understanding of seismic hazard in Tehuantepec, Mexico, using amphibious MT studies
合作研究:利用两栖 MT 研究更好地了解墨西哥特万特佩克的地震灾害
  • 批准号:
    2105776
  • 财政年份:
    2021
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
  • 批准号:
    2026866
  • 财政年份:
    2020
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Marine CSEM study of the southern Hikurangi Margin: A first step towards estimating the global gas hydrate carbon budget
希库朗吉边缘南部的海洋 CSEM 研究:估算全球天然气水合物碳预算的第一步
  • 批准号:
    1916553
  • 财政年份:
    2019
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
The Mendocino Fracture Zone: A natural laboratory to study aging of the lithosphere and asthenosphere
门多西诺断裂带:研究岩石圈和软流圈老化的天然实验室
  • 批准号:
    1736590
  • 财政年份:
    2017
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
Central Atlantic Lithosphere-Asthenosphere Boundary Study
中大西洋岩石圈-软流圈边界研究
  • 批准号:
    1536400
  • 财政年份:
    2015
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: SERPENT: Serpentinite, Extension and Regional Porosity Experiment across the Nicaraguan Trench
合作研究:SERPENT:尼加拉瓜海沟的蛇纹岩、延伸和区域孔隙度实验
  • 批准号:
    0841114
  • 财政年份:
    2009
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Constraining the Magmatic Budget of the EPR at 9-N Using Broadband Marine MT
使用宽带海洋 MT 将 EPR 的岩浆预算限制在 9-N
  • 批准号:
    0241597
  • 财政年份:
    2003
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Global Conductivity by Spatiotemporal Analysis
合作研究:时空分析的全球电导率
  • 批准号:
    0087391
  • 财政年份:
    2001
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
  • 批准号:
    52306105
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
  • 批准号:
    12375219
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于数据-机理协同驱动降阶模型的质子交换膜燃料电池多物理场孪生
  • 批准号:
    52306112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于观测和CMIP6/LUMIP试验的毁林/造林生物物理效应模拟评估和约束研究
  • 批准号:
    42375115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Mapping of surface mineral distribution on the Moon and lunar Web-GIS study based on lunar exploration data
月球表面矿物分布图及基于探月数据的月球Web-GIS研究
  • 批准号:
    26400458
  • 财政年份:
    2014
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CSEDI: Collaborative Res: Toward Mapping 3D Variations in Temperature and Chemical Composition in the Upper Mantle through a Mineral Physics-Based Inversion of Seismic Waveforms
CSEDI:协作研究:通过基于矿物物理的地震波形反演绘制上地幔温度和化学成分的 3D 变化
  • 批准号:
    0112409
  • 财政年份:
    2001
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
CSEDI: Collaborative Res.: Toward Mapping 3D Variations in Temperature and Chemical Composition in the Upper Mantle through a Mineral Physics-based Inversion of Seismic Waveforms
CSEDI:协作研究:通过基于矿物物理的地震波形反演绘制上地幔温度和化学成分的 3D 变化
  • 批准号:
    0111824
  • 财政年份:
    2001
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Mineral Physics Based Geodynamical Modeling of Anisotropic Structure in the Lowermost Mantle
CSEDI合作研究:基于矿物物理的下地幔各向异性结构地球动力学模型
  • 批准号:
    0196380
  • 财政年份:
    2001
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Mineral Physics Based Geodynamical Modeling of Anisotropic Structure in the Lower Most Mantle
CSEDI合作研究:基于矿物物理的下地幔各向异性结构地球动力学模型
  • 批准号:
    9905601
  • 财政年份:
    1999
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了