Frame mechanics: Dynamical principles for optimal redundant expansions

框架力学:最佳冗余扩展的动力学原理

基本信息

  • 批准号:
    1109545
  • 负责人:
  • 金额:
    $ 21.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

BodmannDMS-1109545 The concept of frame mechanics addresses the need for constructing an abundance of optimal redundant, stable expansions with frames, which have become central to applications of mathematics in remote sensing or wireless transmissions, in analog-digital conversion such as audio and video encoding, in packet-based network communications, noise-insensitive quantum computing and recently also in compressive sensing. Despite its popularity, the search for near-optimal frames has been successful mostly in small dimensions, or it had to rely on specific group-representation properties, or the use of randomization principles. In frame mechanics, the investigator is studying an alternative to the conventional, structured or random design methods by letting frames evolve under flows which drive them towards optimality, instead of constructing them directly. The general objectives are to find (1) appropriate frame dynamics, (2) suitable initializations, and to obtain (3) deterministic control of the approximation error. The envisioned outcome of the project includes leveraging recently established numerical results on the construction of equiangular tight frames for the verification of Zauner's conjecture (the existence of maximal Gabor frames in all finite-dimensional Hilbert spaces), constructing controlled approximations of Grassmannian frames and fusion frames for loss-insensitive transmissions in wireless or packet-based network communications, and the design of matrices for compressive sensing based on quantum chaotic dynamics which improve the restricted isometry properties of sensing matrices. The mathematics of redundant signal representations is called frame theory. For practical purposes, a frame is a tool which incorporates or removes repetitive information when data is stored, transmitted or received. Frames have become essential in many data-intensive areas of modern technology, because the repetitive information helps compensate errors of transmission devices and sensors. However, over the last decades, progress in the optimal design of frames has been outpaced by the rapid growth of data generated by our hardware. In frame mechanics, the investigator and his students explore a fundamentally new strategy to overcome this problem: The burden of constructing such optimal frames is put on the computer, which lets frames evolve in a way that drives them towards optimality. The goal of this project is to demonstrate that this dynamic design strategy is mathematically guaranteed to find many optimal frames where previous attempts failed. Frame mechanics allows us to maximize performance in remote sensing, seismic and medical imaging, wireless and fiber-optic communications, and to make internet transmissions robust to network outages.
BodmannDMS-1109545 帧力学的概念解决了用帧构建大量最佳冗余、稳定扩展的需求,这已成为遥感或无线传输、音频和视频编码等模数转换中数学应用的核心、基于数据包的网络通信、噪声不敏感的量子计算以及最近的压缩传感领域。 尽管它很受欢迎,但对近乎最优框架的搜索主要在小维度上取得了成功,或者它必须依赖于特定的组表示属性或随机化原理的使用。 在框架力学中,研究人员正在研究传统的结构化或随机设计方法的替代方法,让框架在驱动它们走向最优的流动下演化,而不是直接构建它们。 一般目标是找到(1)适当的框架动力学,(2)适当的初始化,并获得(3)近似误差的确定性控制。 该项目的预期成果包括利用最近建立的等角紧框架构造的数值结果来验证 Zauner 猜想(所有有限维希尔伯特空间中存在最大 Gabor 框架),构造格拉斯曼框架和融合框架的受控近似用于无线或基于分组的网络通信中的丢失不敏感传输,以及基于量子混沌动力学的压缩感知矩阵的设计,改善了感知矩阵的受限等距特性。 冗余信号表示的数学称为框架理论。 出于实用目的,框架是一种在存储、传输或接收数据时合并或删除重复信息的工具。 帧在现代技术的许多数据密集型领域已变得至关重要,因为重复信息有助于补偿传输设备和传感器的错误。 然而,在过去的几十年里,框架优化设计的进展已经被硬件生成的数据的快速增长所超越。 在框架力学中,研究人员和他的学生探索了一种全新的策略来克服这个问题:构建这种最佳框架的负担被放在计算机上,这让框架以一种驱使它们走向最优的方式进化。 该项目的目标是证明这种动态设计策略在数学上可以保证找到许多先前尝试失败的最佳框架。 框架力学使我们能够最大限度地提高遥感、地震和医学成像、无线和光纤通信的性能,并使互联网传输能够应对网络中断。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernhard Bodmann其他文献

Bernhard Bodmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernhard Bodmann', 18)}}的其他基金

Frames as dictionaries in inverse problems: Recovery guarantees for structured sparsity, unstructured environments, and symmetry-group identification
逆问题中的框架作为字典:结构化稀疏性、非结构化环境和对称群识别的恢复保证
  • 批准号:
    2308152
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
ATD: Pop-Flow: Spatio-Temporal Modeling of Flows in Mobility Networks for Prediction and Anomaly Detection
ATD:Pop-Flow:用于预测和异常检测的移动网络中的流时空建模
  • 批准号:
    1925352
  • 财政年份:
    2019
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Frame Compatibility: Discrete Versus Continuous Redundant Expansions, Strategies for Narrowing the Digital-Analog Gap
框架兼容性:离散扩展与连续冗余扩展、缩小数模差距的策略
  • 批准号:
    1715735
  • 财政年份:
    2017
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Frame builder: Greedy construction principles for near-optimal signal sparsification, transmission and recovery
框架生成器:用于近乎最优信号稀疏、传输和恢复的贪婪构造原理
  • 批准号:
    1412524
  • 财政年份:
    2014
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant
Frames as codes and classifiers
框架作为代码和分类器
  • 批准号:
    0807399
  • 财政年份:
    2008
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Standard Grant

相似国自然基金

烯丙基叠氮动态平衡混合物的动态动力学拆分
  • 批准号:
    22371245
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于三维界面设计的TiBnw@石墨烯/Ti复合材料制备及动态力学性能研究
  • 批准号:
    52301186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高速破片冲击作用下锂离子电池的动态力学行为和失效机制研究
  • 批准号:
    12302454
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
冠脉BRS术后新生斑块形成的血流动力学动态多因素调控机制
  • 批准号:
    82302285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
初级纤毛介导基质动态刚度调控骨髓间充质干细胞成骨分化的力学生物学机制
  • 批准号:
    12372310
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
  • 批准号:
    23K17657
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of gradient dynamical systems with noncompact orbits by profile decomposition
轮廓分解分析非紧轨道梯度动力系统
  • 批准号:
    23K03166
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of discrete dynamical systems described by max-plus equations and their applications
最大加方程描述的离散动力系统分析及其应用
  • 批准号:
    23K03238
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On a Combinatorial Characterization of Dynamical Invariant Sets of Regulatory Networks
关于调节网络动态不变集的组合表征
  • 批准号:
    23K03240
  • 财政年份:
    2023
  • 资助金额:
    $ 21.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了