Monte Carlo Methods for Analysis of Large Spatial Data
用于分析大空间数据的蒙特卡罗方法
基本信息
- 批准号:1106494
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatial data sets are analyzed in many scientific disciplines, such as ecology, geology, and environmental sciences. However, the classical approaches, such as Kriging and Bayesian hierarchical Gaussian modeling, often break down for large data sets due to expensive matrix inverse operations, whose computational complexity increases in cubic order with the number of spatial locations. To alleviate this difficulty, various approximation approaches, such as covariance tapering, lower-dimensional space spatial process approximation, likelihood approximation and Markov random field approximations, have been proposed under the general idea of approximating the original spatial model with a computationally convenient model. A general concern on these approaches is the adequacy of approximation. In this proposal, the investigators propose three new approaches, Bayesian auxiliary lattice approach, Bayesian site selection approach and marginal inference approach. The Bayesian auxiliary lattice approach introduces an auxiliary lattice to the space of observations and defines a hidden Gaussian Markov random field on the auxiliary lattice. By using some analytical results of Gaussian Markov random fields, the Bayesian auxiliary lattice approach completely avoids the problem of matrix inversion in likelihood evaluation. The Bayesian site selection approach reformulates the problem of spatial model estimation as a problem of Bayesian variable selection. It works with only a small proportion of the data at each iteration and thus significantly reduces the dimension of the data. The marginal inference approach is proposed based on the idea of bootstrap resampling. Like the Bayesian site selection approach, it works with only a small proportion of the data at each iteration and thus significantly reduces the dimension of the data. It is worth noting that the Bayesian site selection and marginal inference approaches are conceptually very different from the approximation approaches existing in the literature. The existing approximation approaches are to approximate the original model using a computationally convenient model. Instead, the Bayesian site selection and marginal inference approaches seek to reduce the dimension of the data, while not sacrificing the complexity of the original model. In this proposal, the investigators also extend the proposed approaches to spatio-temporal models with applications to satellite climate data. How to deal with missing data for spatio-temporal models are addressed.The intellectual merit of this project is to provide some computationally efficient or data dimension reduction approaches for statistical analysis of large spatial data. The new approaches address some core problems in spatial data analysis, such as large matrix inversion and missing data imputation. The new approaches are expected to play a major role in statistical analysis of geostatistical data, satellite climate data and other large spatial data. This project will have broader impacts in both communities of spatial statistics and computational atmospheric sciences. The research results will be disseminated to the communities via direct collaboration with researchers in other disciplines, conference presentations, books, and papers to be published in academic journals. The project will have also significant impacts on education through direct involvement of graduate students in the project and incorporation of results into undergraduate and graduate courses.
空间数据集在许多科学学科中进行分析,例如生态学、地质学和环境科学。 然而,克里金法和贝叶斯分层高斯建模等经典方法经常因昂贵的矩阵逆运算而无法处理大型数据集,其计算复杂度随着空间位置数量的增加而按三次方增加。为了缓解这一困难,在用计算方便的模型来逼近原始空间模型的总体思想下,提出了各种逼近方法,例如协方差锥化、低维空间空间过程逼近、似然逼近和马尔可夫随机场逼近。对这些方法的普遍关注是近似的充分性。在该提案中,研究人员提出了三种新方法:贝叶斯辅助格方法、贝叶斯选址方法和边际推理方法。贝叶斯辅助格方法将辅助格引入观测空间,并在辅助格上定义隐藏的高斯马尔可夫随机场。 贝叶斯辅助格方法利用高斯马尔可夫随机场的一些分析结果,完全避免了似然评估中的矩阵求逆问题。贝叶斯选址方法将空间模型估计问题重新表述为贝叶斯变量选择问题。它在每次迭代时仅处理一小部分数据,从而显着降低了数据的维度。边际推理方法是基于自举重采样的思想提出的。与贝叶斯选址方法一样,它在每次迭代时仅处理一小部分数据,从而显着降低了数据的维度。值得注意的是,贝叶斯选址和边际推理方法在概念上与文献中存在的近似方法有很大不同。现有的近似方法是使用计算方便的模型来近似原始模型。相反,贝叶斯选址和边际推理方法寻求减少数据的维度,同时不牺牲原始模型的复杂性。在这项提案中,研究人员还将所提出的方法扩展到时空模型,并将其应用于卫星气候数据。讨论了如何处理时空模型的缺失数据。该项目的智力价值是为大型空间数据的统计分析提供一些计算效率或数据降维的方法。新方法解决了空间数据分析中的一些核心问题,例如大矩阵求逆和缺失数据插补。新方法预计将在地统计数据、卫星气候数据和其他大空间数据的统计分析中发挥重要作用。该项目将对空间统计和计算大气科学界产生更广泛的影响。研究成果将通过与其他学科研究人员的直接合作、会议演讲、书籍和在学术期刊上发表的论文来传播给社区。 该项目还将通过研究生直接参与该项目并将成果纳入本科生和研究生课程,对教育产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Faming Liang其他文献
Networks Involved in Coronary Collateral Formation
参与冠状动脉侧支形成的网络
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jian Zhang;J. Regieli;M. Schipper;M. M. Entius;Faming Liang;J. Koerselman;H. J. Ruven;Yolanda van der Graaf;D. Grobbee;Pieter A. Doevendans;Pieter A. Doevendans - 通讯作者:
Pieter A. Doevendans
An extended Langevinized ensemble Kalman filter for non-Gaussian dynamic systems
用于非高斯动态系统的扩展 Langevinized 系综卡尔曼滤波器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Peiyi Zhang;Tianning Dong;Faming Liang - 通讯作者:
Faming Liang
A New Paradigm for Generative Adversarial Networks Based on Randomized Decision Rules
基于随机决策规则的生成对抗网络新范式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.4
- 作者:
Sehwan Kim;Qifan Song;Faming Liang - 通讯作者:
Faming Liang
Fast Value Tracking for Deep Reinforcement Learning
深度强化学习的快速价值跟踪
- DOI:
10.48550/arxiv.2403.13178 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Frank Shih;Faming Liang - 通讯作者:
Faming Liang
Faming Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Faming Liang', 18)}}的其他基金
A New Stochastic Neural Network: Statistical Perspectives and Applications
一种新的随机神经网络:统计视角和应用
- 批准号:
2210819 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Scalable Algorithms for Bayesian On-Line Learning with Large-Scale Dynamic Data
用于大规模动态数据的贝叶斯在线学习的可扩展算法
- 批准号:
2015498 - 财政年份:2020
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Statistical Inference for Biomedical Big Data: Theory, Methods, and Tools
生物医学大数据的统计推断:理论、方法和工具
- 批准号:
1703077 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
On Statistical Modeling and Parameter Estimation for High Dimensional Systems
高维系统的统计建模和参数估计
- 批准号:
1818674 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
On Statistical Modeling and Parameter Estimation for High Dimensional Systems
高维系统的统计建模和参数估计
- 批准号:
1612924 - 财政年份:2016
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Monte Carlo Methods for Analysis of Large Spatial Data
用于分析大空间数据的蒙特卡罗方法
- 批准号:
1545738 - 财政年份:2015
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Parallel Iterative Monte Carlo Methods for Statistical Analysis of Big Data
合作研究:用于大数据统计分析的高效并行迭代蒙特卡罗方法
- 批准号:
1545202 - 财政年份:2015
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Parallel Iterative Monte Carlo Methods for Statistical Analysis of Big Data
合作研究:用于大数据统计分析的高效并行迭代蒙特卡罗方法
- 批准号:
1317131 - 财政年份:2013
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Sampling from Distributions with Intractable Integrals
从具有棘手积分的分布中采样
- 批准号:
1007457 - 财政年份:2010
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Development of Stochastic Approximation Monte Carlo Methods
随机逼近蒙特卡罗方法的发展
- 批准号:
0706755 - 财政年份:2007
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
相似国自然基金
赴意大利参加基于量子蒙特卡洛方法处理描述物质新奇态问题研讨会
- 批准号:12381240135
- 批准年份:2023
- 资助金额:2 万元
- 项目类别:国际(地区)合作与交流项目
复杂空间上具有特殊约束的Monte Carlo方法
- 批准号:12371269
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于变维马尔科夫链蒙特卡洛法和动态聚类法的重力反演方法研究及示范应用
- 批准号:42374173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高维资产定价模型的求解方法研究:基于蒙特卡洛的理论与计算
- 批准号:72303190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多相催化体系动力学蒙特卡洛方法与程序开发
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Transfer Learning for Monte Carlo Methods
蒙特卡罗方法的迁移学习
- 批准号:
EP/Y022300/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Innovating and Validating Scalable Monte Carlo Methods
创新和验证可扩展的蒙特卡罗方法
- 批准号:
DE240101190 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Discovery Early Career Researcher Award
Evaluating Policy Solutions Aimed at Improving Hospice Care Access in Rural Areas
评估旨在改善农村地区临终关怀服务的政策解决方案
- 批准号:
10555012 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Ultra-dense ceramic scintillator for BrainPET scanner
用于 BrainPET 扫描仪的超致密陶瓷闪烁体
- 批准号:
10761208 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
- 批准号:
10731255 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别: