Optimizing Ion Mobility, Chemical Stability, and Mechanical Rigidity in Composite Electrolytes

优化复合电解质中的离子淌度、化学稳定性和机械刚性

基本信息

项目摘要

NON-TECHNICAL DESCRIPTION: Energy storage is a critical aspect of sustainable and renewable energy technologies, and mobile information systems. While the chemical nature of anode and cathode determines the amount of energy that can be stored in a battery of a given size, the separator material (or electrolyte) controls its charge cycling rates, lifetime, and structural integrity. High conductance of the ion responsible for the electrochemical conversion (e.g., lithium) facilitates high power release and short recharge times. Chemical compatibility between electrolyte and electrode materials prevents the formation of blocking layers that would suppress the electrochemical process. Mechanical rigidity of the electrolyte inhibits dendrite growth that can short circuit the device and lead to catastrophic failure (e.g., spontaneous combustion). Unfortunately, these performance criteria rely on conflicting materials properties, and the challenge lies in devising a composite structure that maximizes all these attributes. In this research, a combination of simulation-based predictive design, advanced materials synthesis approaches, microstructural characterization, and performance monitoring is employed to develop new composite electrolytes with unsurpassed performance. This project contributes to the development of human resources in an innovative way by training a doctoral student in combining experimental and computational tools of investigation, and providing research experiences for undergraduate students. Connections with secondary school educators are reached through an ASM High School Teachers Camp. As well, they are pursuing a new masters mentoring program for students from minority serving institutions. It is expected to have a dual benefit - on one hand, students are gaining insight into scientific research, and on the other hand, faculty are better-positioned to proactively recruit underrepresented minorities and women into doctoral programs in science and engineering.TECHNICAL DETAILS: The objective of this research is to develop composite battery electrolytes that exhibit high Li+ conductivity, that are mechanically rigid enough to suppress lithium dendrite growth and safely separate electrodes in self-supporting device structures, and that possess an electrochemical stability range wide enough to accommodate large electrode potential differences. While high ionic conductivity and transference numbers are important for the charge-discharge rates of batteries, stiffness and electrochemical stability are essential for taking advantage of the full redox potential of Li metal, and thus increase the gravimetric capacity of energy storage for these devices. A combination of molecular simulation-based predictive design, hybrid organic-inorganic sol-gel synthesis, in situ monitoring of microstructural developments using inelastic light scattering, and dielectric impedance measurements is used to systematically explore materials chemistries and building block functionalities for the creation of nano-porous heterogeneous electrolytes. By targeting enhanced stiffness, geometrically optimized Li+ migration paths, minimal dissipative coupling between cation and donor, and tunable redox potentials, these hybrid network structures are designed to exhibit unsurpassed performance as rechargeable battery electrolytes.
非技术描述:储能是可持续和可再生能源技术以及移动信息系统的关键方面。 虽然阳极和阴极的化学性质决定了可以存储在给定尺寸的电池中的能量量,但分离器材料(或电解质)控制其电荷循环速率,寿命和结构完整性。 负责电化学转化率(例如锂)的离子的高电导率有助于高功率释放和短时间充电时间。 电解质和电极材料之间的化学兼容性阻止了抑制电化学过程的阻断层的形成。 电解质的机械刚度抑制了可以短路的树突生长,并导致灾难性衰竭(例如自发燃烧)。 不幸的是,这些性能标准依赖于冲突的材料属性,而挑战在于设计一种使所有这些属性最大化的复合结构。 在这项研究中,采用基于模拟的预测设计,高级材料合成方法,微结构表征和性能监测的组合来开发具有无与伦比性能的新复合电解质。 该项目通过培训博士生将实验和计算研究工具结合在一起,并为本科生提供研究经验,以创新的方式为人力资源的发展做出了贡献。通过ASM高中教师训练营与中学教育者的联系。 同样,他们正在为来自少数服务机构的学生提供新的硕士指导计划。 预计它将具有双重好处 - 一方面,学生正在深入了解科学研究,另一方面,教师的位置更好,可以主动招募代表性不足的少数群体和女性进入科学和工程学的博士学位课程。技术细节:这项研究的目的是,这项研究的目的是在较高的抑制范围内抑制了较高的抑制,以抑制机制,这是机制的,这是机制的,这是机制的,这是一种机制的抑制作用。自支撑设备结构中的电极,并且具有足够宽的电化学稳定性范围足以容纳大电极的电势差。 虽然高离子电导率和转移数对于电池的充电速率很重要,但刚度和电化学稳定性对于利用LI金属的全氧化还原电位,因此增加了这些设备的储能能力。 基于分子仿真的预测设计,混合有机溶胶 - 凝胶合成,使用非弹性光散射对微结构开发以及介电脱位测量的结合,用于系统地探索材料化学和构建块功能,以创建Nano-Poros polose polose polose opertolos electolos enetrolos enetrolos enetrolos electolos electolos electolos electolos electerses sealtos sealterolos electolos electerses s。 通过靶向增强的刚度,几何优化的LI+迁移路径,阳离子和供体之间的最小耗散耦合以及可调的氧化还原电位,这些混合网络结构旨在表现出无与伦比的性能作为可充电电池电解质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kieffer其他文献

Cs oxide aggregation in SIMS craters in organic samples for optoelectronic application
  • DOI:
    10.1016/j.susc.2012.04.003
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Khanh Q. Ngo;Patrick Philipp;John Kieffer;Tom Wirtz
  • 通讯作者:
    Tom Wirtz
Polarity-induced dual room-temperature phosphorescence involving the T2 states of pure organic phosphors
涉及纯有机磷光体 T2 态的极性诱导双室温磷光
  • DOI:
    10.1039/d2tc02152h
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lixin Zang;Wenhao Shao;Onas Bolton;Ramin Ansari;Seong-Jun Yoon;Jung-Moo Heo;John Kieffer;Adam Matzger;Jinsang Kim
  • 通讯作者:
    Jinsang Kim
Prevalence of chlamydia and gonorrhea in US Air Force male basic trainees
美国空军男性基础学员衣原体和淋病患病率
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jacqueline Kate Wade;Joseph E. Marcus;John Kieffer;Korey Kasper;Joshua Smalley
  • 通讯作者:
    Joshua Smalley
Artists of the new wave
新浪潮艺术家
Fragility and the rate of change of the energy landscape topography
  • DOI:
    10.1016/j.nocx.2022.100101
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Cameran Beg;John Kieffer
  • 通讯作者:
    John Kieffer

John Kieffer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kieffer', 18)}}的其他基金

Comparative Evaluation of Ionic Transport Mechanisms in Solid-State Electrolytes
固态电解质中离子传输机制的比较评估
  • 批准号:
    1610742
  • 财政年份:
    2016
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Continuing Grant
DMREF: SusChEM: Simulation-Based Predictive Design of All-Organic Phosphorescent Light-Emitting Molecular Materials
DMREF:SusChEM:基于模拟的全有机磷光发光分子材料的预测设计
  • 批准号:
    1435965
  • 财政年份:
    2014
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant
Active Regulation of Thermal Boundary Conductance
热边界传导的主动调节
  • 批准号:
    1402845
  • 财政年份:
    2014
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant
Perturbation Codes: A New Class of Linear Convolutional Codes
扰动码:一类新的线性卷积码
  • 批准号:
    0830381
  • 财政年份:
    2008
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Information Theory of Data Structures
合作研究:数据结构信息论
  • 批准号:
    0830457
  • 财政年份:
    2008
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant
Materials World Network: Growth, Kinetics, and Morphology of Multi-Layered Organic Thin Films via Low-Energy Secondary Ion Mass Spectrometry
材料世界网络:通过低能二次离子质谱法研究多层有机薄膜的生长、动力学和形态
  • 批准号:
    0806867
  • 财政年份:
    2008
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Continuing Grant
Enhancing Materials Science and Engineering Curricula through Computation
通过计算加强材料科学与工程课程
  • 批准号:
    0633180
  • 财政年份:
    2007
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant
Structural Developments in Ion-Implanted Sol-Gel Films and Resulting Glasses
离子注入溶胶-凝胶薄膜和所得玻璃的结构发展
  • 批准号:
    0605905
  • 财政年份:
    2006
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
  • 批准号:
    0230662
  • 财政年份:
    2001
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant
Polyamorphism and Structural Transitions during Glass Formation
玻璃形成过程中的多晶现象和结构转变
  • 批准号:
    0072258
  • 财政年份:
    2000
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Standard Grant

相似国自然基金

水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
  • 批准号:
    22309205
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超低温钠离子电池CEI膜原位构筑、界面输运机制及电化学性能研究
  • 批准号:
    52302260
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
反常HfO2基铁电薄膜微束离子精准调控亚稳相的研究
  • 批准号:
    52302151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
  • 批准号:
    12375219
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

High-Resolution Ion Mobility Mass Spectrometer for Complex Mixture Analysis
用于复杂混合物分析的高分辨率离子淌度质谱仪
  • 批准号:
    537609375
  • 财政年份:
    2024
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Major Research Instrumentation
Ion mobility mass spectrometer
离子淌度质谱仪
  • 批准号:
    531416396
  • 财政年份:
    2024
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Major Research Instrumentation
Ion Mobility Mass Spectrometry Training Network
离子淌度质谱培训网络
  • 批准号:
    EP/Y032845/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Research Grant
An ion mobility-mass spectrometry based platform for structural proteomics
基于离子淌度-质谱的结构蛋白质组学平台
  • 批准号:
    LE240100135
  • 财政年份:
    2024
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Li-Ion Battery Storage Circularity For Africa By Africa for Low-Carbon E-Mobility E-Agriculture and Minigrids
非洲的锂离子电池循环存储 非洲用于低碳电动交通、电子农业和迷你电网
  • 批准号:
    10073042
  • 财政年份:
    2024
  • 资助金额:
    $ 55.2万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了