Manifolds, Moduli Spaces and Homotopy Theory
流形、模空间和同伦理论
基本信息
- 批准号:1105058
- 负责人:
- 金额:$ 37.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research will continue the development of a relatively new area of mathematics in which homotopy theory is used to study various moduli spaces. An important early result this area is the solution, by Madsen and Weiss, of a conjecture of Mumford. Their result concerns the group of symmetries of closed two-dimensional manifolds or, equivalently, it concerns the moduli space of such manifolds. A major part of Galatius' proposed activity will study the extension of this theory to manifolds of higher dimension. This subject lies in the overlap between algebraic topology and other branches of mathematics, with expected applications in algebraic geometry, symplectic geometry, and possibly theoretical physics.Galatius' research will concern the study of manifolds and their symmetries. A manifold is a generalized versions of space, appearing all over mathematics and science. The defining property of a manifold is that it is locally parametrized by a finite number of real parameters (for example, the surface of the earth is locally parametrized by two parameters, longitude and latitude). A classic topic in algebraic topology, Galatius' field of research, is the classification of manifolds: how does one decide whether two manifolds are isomorphic, and how does one write a list of all possible manifolds. A related classical problem is the classification of symmetries of manifolds (for example, rotation about an axis is a symmetry of the sphere). Galatius' research will apply new methods to study these classic questions.
拟议的研究将继续开发一个相对较新的数学领域,其中使用同型理论来研究各种模量空间。 一个重要的早期结果是Madsen和Weiss的解决方案,是Mumford的猜想。他们的结果涉及封闭的二维流形的对称性组,或者等效地涉及此类歧管的模量空间。 加拉图斯提出的活动的主要部分将研究该理论的扩展到更高维度的流形。该主题在于代数拓扑结构与数学的其他分支之间的重叠,在代数几何形状,符号几何形状以及可能的理论物理学中具有预期的应用。 歧管是一个广义的空间版本,遍布数学和科学。 歧管的定义属性是,它通过有限数量的实际参数在局部参数化(例如,地球表面通过两个参数,经度和纬度在局部参数化)。 Galatius的研究领域是代数拓扑的一个经典主题,是流形的分类:一个人如何决定两个流形是否是同构,以及如何编写所有可能的歧管列表。 一个相关的经典问题是歧管对称性的分类(例如,轴旋转是球体的对称性)。 Galatius的研究将采用新方法来研究这些经典问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Soren Galatius其他文献
REGIONAL LEFT VENTRICULAR LONGITUDINAL STRAIN IS AN INDEPENDENT PREDICTOR OF HEART FAILURE AND CARDIOVASCULAR DEATH AFTER CORONARY ARTERY BYPASS GRAFTING
- DOI:10.1016/s0735-1097(23)01754-010.1016/s0735-1097(23)01754-0
- 发表时间:2023-03-072023-03-07
- 期刊:
- 影响因子:
- 作者:Frederikke Vyff;Niklas Dyrby Johansen;Flemming Javier Olsen;Lisa Steen Duus;Filip Soeskov Davidovski;Soeren Lindberg;Thomas Fritz Hansen;sune a. pedersen;Soren Galatius;Rasmus M⊘gelvang;Tor Biering-SorensenFrederikke Vyff;Niklas Dyrby Johansen;Flemming Javier Olsen;Lisa Steen Duus;Filip Soeskov Davidovski;Soeren Lindberg;Thomas Fritz Hansen;sune a. pedersen;Soren Galatius;Rasmus M⊘gelvang;Tor Biering-Sorensen
- 通讯作者:Tor Biering-SorensenTor Biering-Sorensen
CHANGE IN GLOBAL LONGITUDINAL STRAIN AND RISK OF HEART FAILURE FOLLOWING ACUTE CORONARY SYNDROME
- DOI:10.1016/s0735-1097(20)32180-x10.1016/s0735-1097(20)32180-x
- 发表时间:2020-03-242020-03-24
- 期刊:
- 影响因子:
- 作者:Kirstine Ravnkilde;Kristoffer Skaarup;Daniel Modin;Anne Nielsen;Mathilde Musoni Falsing;Allan Iversen;Sune Pedersen;Thomas Hansen;Soren Galatius;Thomas Jespersen;Amil M. Shah;Gunnar Gislason;Tor Biering-SorensenKirstine Ravnkilde;Kristoffer Skaarup;Daniel Modin;Anne Nielsen;Mathilde Musoni Falsing;Allan Iversen;Sune Pedersen;Thomas Hansen;Soren Galatius;Thomas Jespersen;Amil M. Shah;Gunnar Gislason;Tor Biering-Sorensen
- 通讯作者:Tor Biering-SorensenTor Biering-Sorensen
The Sn-equivariant top weight Euler characteristic of Mg,n
Mg,n 的 Sn 等变顶重欧拉特征
- DOI:
- 发表时间:20192019
- 期刊:
- 影响因子:1.7
- 作者:Melody Chan;Carel Faber;Soren Galatius;Sam PayneMelody Chan;Carel Faber;Soren Galatius;Sam Payne
- 通讯作者:Sam PayneSam Payne
CONTEMPORARY DIABETIC CARDIOMYOPATHY IS CHARACTERIZED BY CONCENTRIC REMODELING AND DIASTOLIC DYSFUNCTION - NOT LEFT VENTRICULAR HYPERTROPHY OR SYSTOLIC DYSFUNCTION
- DOI:10.1016/s0735-1097(16)31543-110.1016/s0735-1097(16)31543-1
- 发表时间:2016-04-052016-04-05
- 期刊:
- 影响因子:
- 作者:Peter Godsk Jørgensen;Magnus Jensen;Rasmus Mogelvang;Thomas Hansen;Soren Galatius;Tor Biering-Sørensen;Heidi Storgaard;Tina Vilsbøll;Peter Rossing;Jan JensenPeter Godsk Jørgensen;Magnus Jensen;Rasmus Mogelvang;Thomas Hansen;Soren Galatius;Tor Biering-Sørensen;Heidi Storgaard;Tina Vilsbøll;Peter Rossing;Jan Jensen
- 通讯作者:Jan JensenJan Jensen
BURDEN OF HOSPITAL ADMISSION AND REPEAT ANGIOGRAPHY IN ANGINA PECTORIS PATIENTS WITH AND WITHOUT CORONARY ARTERY DISEASE
- DOI:10.1016/s0735-1097(14)61625-910.1016/s0735-1097(14)61625-9
- 发表时间:2014-04-012014-04-01
- 期刊:
- 影响因子:
- 作者:Lasse Jespersen;Steen Abildstrom;Anders Hvelplund;Jan Madsen;Soren Galatius;Frants Pedersen;Soren Hojberg;Eva PrescottLasse Jespersen;Steen Abildstrom;Anders Hvelplund;Jan Madsen;Soren Galatius;Frants Pedersen;Soren Hojberg;Eva Prescott
- 通讯作者:Eva PrescottEva Prescott
共 5 条
- 1
Soren Galatius的其他基金
International Topology of Manifolds Conference
国际流形拓扑会议
- 批准号:16196981619698
- 财政年份:2016
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Standard GrantStandard Grant
Manifolds and Moduli Spaces
流形和模空间
- 批准号:14050011405001
- 财政年份:2014
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Continuing GrantContinuing Grant
Young Topologists Meeting 2014, June 30 - July 4, 2014
2014年青年拓扑学家会议,2014年6月30日至7月4日
- 批准号:14304561430456
- 财政年份:2014
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Standard GrantStandard Grant
Homotopy Theory and Moduli Spaces
同伦理论和模空间
- 批准号:08058430805843
- 财政年份:2008
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Standard GrantStandard Grant
Homotopy theoretic methods in the study of moduli spaces
模空间研究中的同伦理论方法
- 批准号:05057400505740
- 财政年份:2005
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
碳纤维/树脂复合材料模量匹配与梯度界面的协同效应及强韧化机制研究
- 批准号:52373080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于丝素蛋白多孔凝胶的低模量柔性脑电极研究
- 批准号:62301555
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高模量高塑性(CNTs+AlN)/AZ91复合材料的制备及性能调控机理研究
- 批准号:52301198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑颗粒特征的粗粒土初始剪切模量宏细观分析及混合驱动模型研究
- 批准号:52309173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高回弹高模量耐疲劳离子皮肤的结构和性能研究
- 批准号:22305033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hyperkähler Manifolds, Moduli Spaces, and Fano Varieties
Hyperkühler 流形、模空间和 Fano 簇
- 批准号:22008002200800
- 财政年份:2022
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Standard GrantStandard Grant
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
- 批准号:RGPIN-2018-04379RGPIN-2018-04379
- 财政年份:2022
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
- 批准号:RGPIN-2018-04379RGPIN-2018-04379
- 财政年份:2021
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
- 批准号:RGPIN-2018-04379RGPIN-2018-04379
- 财政年份:2020
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
CAREER: Locally Homogeneous Geometric Manifolds and Their Moduli Spaces
职业:局部齐次几何流形及其模空间
- 批准号:19454931945493
- 财政年份:2020
- 资助金额:$ 37.42万$ 37.42万
- 项目类别:Continuing GrantContinuing Grant