New perspectives on dispersive equations

关于色散方程的新观点

基本信息

  • 批准号:
    1068815
  • 负责人:
  • 金额:
    $ 32.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Dispersive partial differential equations (PDE) model certain wave propagation phenomena in nature. Their solutions are waves that spread out in space as time evolves but that conserve energy. Probably the best known equation within the class of dispersive PDE is the nonlinear Schrodinger equation, which models a variety of physical waves, from signals in fiber optics to the macroscopic dynamics of the Bose-Einsten condensate. In the last fifteen years enormous progress has been made in settling fundamental questions on existence of solutions to the equation, their long-time behavior, and singularity formation. The thrust of this body of work has focused primarily on deterministic aspects of wave phenomena that have been studied with sophisticated tools from nonlinear Fourier analysis, analytic number theory, and geometry. The principal investigator's main line of research has revolved around this aspect of mathematics for along time. More recently, a growing interest has been shown in incorporating nondeterministic points of view into the field of dispersive PDE. This has become one of the principal investigator's favorite lines of work in the last couple of years, and one that will be pursued in this project. Another new element in the project is the study of the "process" used by mathematical physicists to pass from a complex system of particles interacting with one another to a macroscopic wave function that is able to describe the most important features of the system as a whole. More precisely, the principal investigator will study the effective evolution equations arising as an appropriate limit of many body quantum dynamics. From a mathematical point of view the types of problems that the principal investigator intends to explore in this project lie at the intersection of Fourier analysis, analytic number theory, numerical analysis, geometry, probability, and mathematical physics. Often it is difficult to "communicate" in so many different mathematical languages, but the time seems ripe to start such a conversation. The description of the problems that the principal investigator proposes in her research program should testify to this fact. Although she conducts her research mostly in the realm of pure mathematics, the solutions to the problems she considers have the potential to see very concrete and very diverse consequences in real life. For example, understanding the most efficient way to send a signal through a fiber optic cable or being able to anticipate the properties of a gas when the temperature approaches absolute zero are two very different phenomena in nature. On the other hand, they are both aspects of solutions to the same dispersive equation, the nonlinear Schrodinger equation that is one of the foci of this project, and they can be studied using the same mathematical language. In recent years, the world has witnessed incredible advances in technology. As scientists and engineers seek to take even greater strides in the technological arena, they are guided by experiments, but also by mathematical models, such as those provided by research on the Schrodinger equation. There is no doubt that solid predictions on the mathematical side will help target the experimental component in the most efficient and cost-effective way possible, thus saving resources as well as valuable time.
分散性偏微分方程(PDE)模型某些自然界的某些波传播现象。他们的解决方案是随着时间的流逝,它们在空间中散布的波浪,但可以节省能量。分散PDE等级中最著名的方程可能是非线性Schrodinger方程,该方程模拟了各种物理波,从光纤信号到玻色剂冷凝物的宏观动力学。在过去的十五年中,在解决有关方程,长期行为和奇异性形成的解决方案的基本问题方面取得了巨大进展。这项工作的推力主要集中在波浪现象的确定性方面,这些方面已通过非线性傅立叶分析,分析数理论和几何形状从精致的工具进行了研究。主要研究者的主要研究线围绕着数学的这一方面围绕着。最近,人们对将非确定性的观点纳入分散PDE领域的兴趣越来越大。在过去的几年中,这已成为主要研究者最喜欢的工作线之一,并且将在该项目中追求。 该项目中的另一个新元素是数学物理学家使用的“过程”的研究,从相互相互作用的复杂粒子系统传递到宏观波函数,该系统能够描述整个系统的最重要特征。更确切地说,主要研究者将研究有效的进化方程,这是许多人体量子动力学的适当限制。从数学角度来看,主要研究者打算在该项目中探索的问题的类型在于傅立叶分析,分析数理论,数值分析,几何,几何,概率和数学物理学的交集。通常,很难用许多不同的数学语言“交流”,但是开始这样的对话的时候似乎已经成熟了。主要研究者在其研究计划中提出的问题的描述应证明这一事实。尽管她主要在纯数学领域进行研究,但她认为的问题的解决方案有可能在现实生活中看到非常具体且非常多样化的后果。例如,了解通过光纤电缆发送信号的最有效方法,或者当温度接近绝对零是两个截然不同的现象时,可以预测气体的性质。另一方面,它们都是相同分散方程的解决方案的方面,即是该项目的焦点之一的非线性Schrodinger方程,可以使用相同的数学语言进行研究。近年来,世界已经见证了技术的令人难以置信的进步。当科学家和工程师试图在技术领域取得更大的进步,因此他们受到实验的指导,也以数学模型为指导,例如关于Schrodinger方程的研究提供的模型。毫无疑问,数学方面的扎实预测将以最有效,最具成本效益的方式来瞄准实验组成部分,从而节省资源以及宝贵的时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Gigliola Staffilan...的其他基金

Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
  • 批准号:
    2052651
    2052651
  • 财政年份:
    2021
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1764403
    1764403
  • 财政年份:
    2018
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Directed Reading Program Network
合作研究:定向阅读计划网络
  • 批准号:
    1740143
    1740143
  • 财政年份:
    2017
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1462401
    1462401
  • 财政年份:
    2015
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Dispersive partial differential equations: between a deterministic and a probabilistic approach
色散偏微分方程:确定性方法和概率方法之间
  • 批准号:
    1362509
    1362509
  • 财政年份:
    2014
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Pseudo-relativistic nonlinear Schroedinger equations
伪相对论非线性薛定谔方程
  • 批准号:
    0702492
    0702492
  • 财政年份:
    2007
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Standard Grant
    Standard Grant
Conference Proposal -- MIT Women in Mathematics: A Celebration
会议提案——麻省理工学院女性数学家:一场庆典
  • 批准号:
    0749377
    0749377
  • 财政年份:
    2007
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Standard Grant
    Standard Grant
Advances in the theory of dispersive equations
色散方程理论的进展
  • 批准号:
    0602678
    0602678
  • 财政年份:
    2006
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Fourier Analysis and Dispersive Equations
傅里叶分析和色散方程
  • 批准号:
    0330731
    0330731
  • 财政年份:
    2003
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于多体散射观点的微纳机电系统中多体Casimir相互作用研究
  • 批准号:
    12304396
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
言语交际中的观点采择老化:基于认知控制的行为干预与神经调控
  • 批准号:
    32371112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
具异构逻辑约束的社交网络观点动力学分析与控制研究
  • 批准号:
    62376242
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
示例引导的专业文本知识观点推断
  • 批准号:
    62376138
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Analyzing the Determinants of the Japanese Dispersed Energy Systems from Sustainability Transitions Perspectives
从可持续转型的角度分析日本分散能源系统的决定因素
  • 批准号:
    20K12296
    20K12296
  • 财政年份:
    2020
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Perspectives on Diversity Creation, Functional Dispersion, and Urban Expansion in Early Modern Spanish Town Planning
现代早期西班牙城市规划中多样性创造、功能分散和城市扩张的视角
  • 批准号:
    19K04781
    19K04781
  • 财政年份:
    2019
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
New perspectives on space-time estimates for dispersive equations
色散方程时空估计的新视角
  • 批准号:
    19H01796
    19H01796
  • 财政年份:
    2019
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Conceptual and practical considerations of analytical perspectives in the field of sustainability transitions studies
可持续转型研究领域分析视角的概念和实践考虑
  • 批准号:
    16K00671
    16K00671
  • 财政年份:
    2016
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
New perspectives on the next-generation intermediate goods trade through trade patterns analysis and field surveys
通过贸易模式分析和实地调查对下一代中间产品贸易的新视角
  • 批准号:
    26380304
    26380304
  • 财政年份:
    2014
  • 资助金额:
    $ 32.69万
    $ 32.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)