Pseudo-relativistic nonlinear Schroedinger equations

伪相对论非线性薛定谔方程

基本信息

  • 批准号:
    0702492
  • 负责人:
  • 金额:
    $ 11.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

Pseudo-relativistic nonlinear Schroedinger EquationsAbstract of Proposed ResearchGigliola Staffilani and Enno LenzmannThis proposal sets forth work on a novel class of dispersive partial differential equations (PDEs) which are called pseudo-relativistic nonlinear Schroedinger equations. These equations, whose mathematical study is still in its infancy, have recently found a significant application as effective descriptions for the dynamical evolution of self-gravitating, relativistic matter. Based on this physical motivation, the PI's proposed research aims at understanding the qualitative behavior of solutions to these model equations. In particular, great emphasis is put on the pseudo-relativistic Hartree equation whose focusing nonlinearity is of critical strength in the sense that large initial data can lead to finite-time blow-up of the solution. Here it is of paramount interest to gain analytical insight into blow-up rates and dynamics, as well as to prove existence of non-radial blow-up solutions, thereby extending the PI's previous results on radial blow-up for the pseudo-relativistic Hartree equation (in collaboration with J. Froehlich). Apart from the issue of finite-time blow-up, the PI proposes a detailed study of global-in-time solutions and their asymptotic behavior as time tends to infinity. Dispersive partial differential equations provide meeting grounds for theoretical and empirical branches of the natural sciences. The mathematical study of pseudo-relativistic Schroedinger equations substantiates intuitive and numerical insights into physical models of theoretical astrophysics. One of the most outstanding problems that astrophysics is facing today is the so-called dark matter problem. Various theoretical models set forth the existence of boson stars as possible candidates for explaining this empirical puzzle. The pseudo-relativistic Hartree equation considered in this proposal serves as an effective description for the dynamical evolution of boson stars. Therefore, this nonlinear dispersive PDE provides analytical testing grounds for these theoretical objects
拟议的研究gigiola seftilani和enno lenzmannthis提案提出的提议提出的提议提出了一系列新型的分散偏微分方程(PDE),这些伪型非线性schroedinger方程提交了拟议的研究gigiola seftilani和enno lenzmannthis,这些方程式称为伪型非线性非线性schroeDinger Schroedinger Schroedinger Schroedinger Schroedinger Equations。这些方程式仍处于起步阶段的数学研究,最近发现了对自我赋予性,相对论问题的动态演变的有效描述的重要应用。基于这种身体动机,PI的拟议研究旨在了解解决这些模型方程的解决方案的定性行为。特别是,在大量初始数据可以导致解决方案有限的时间爆炸的意义上,其焦点非线性具有关键的强度,其焦点非线性具有关键的强度。在这里,获得对爆炸速率和动态的分析洞察以及证明存在非爆炸解决方案的最高兴趣,从而扩大了PI对伪偏见的Hartree方程(与J. Froehlich的协作)的径向爆炸的先前结果。除了有限的时间爆炸问题外,PI还提出了一项详细研究全球及时解决方案及其渐近行为的详细研究,因为时间往往是无穷大的。分散部分微分方程为自然科学的理论和经验分支提供了满足理由。伪尊敬的Schroedinger方程的数学研究证明了对理论天体物理学物理模型的直观和数值见解。今天,天体物理学面临的最杰出的问题之一就是所谓的暗物质问题。各种理论模型阐明了玻色颗星的存在是解释这种经验难题的可能候选者。该提案中考虑的伪忠实的Hartree方程是玻色子恒星动力学演化的有效描述。因此,这种非线性色散PDE为这些理论对象提供了分析测试场

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Gigliola Staffilan...的其他基金

Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
  • 批准号:
    2052651
    2052651
  • 财政年份:
    2021
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1764403
    1764403
  • 财政年份:
    2018
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Directed Reading Program Network
合作研究:定向阅读计划网络
  • 批准号:
    1740143
    1740143
  • 财政年份:
    2017
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1462401
    1462401
  • 财政年份:
    2015
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Dispersive partial differential equations: between a deterministic and a probabilistic approach
色散偏微分方程:确定性方法和概率方法之间
  • 批准号:
    1362509
    1362509
  • 财政年份:
    2014
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Continuing Grant
    Continuing Grant
New perspectives on dispersive equations
关于色散方程的新观点
  • 批准号:
    1068815
    1068815
  • 财政年份:
    2011
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Conference Proposal -- MIT Women in Mathematics: A Celebration
会议提案——麻省理工学院女性数学家:一场庆典
  • 批准号:
    0749377
    0749377
  • 财政年份:
    2007
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Standard Grant
    Standard Grant
Advances in the theory of dispersive equations
色散方程理论的进展
  • 批准号:
    0602678
    0602678
  • 财政年份:
    2006
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Fourier Analysis and Dispersive Equations
傅里叶分析和色散方程
  • 批准号:
    0330731
    0330731
  • 财政年份:
    2003
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

利用超强激光脉冲与等离子体相互作用产生相对论自旋极化正电子束的机理研究
  • 批准号:
    11905169
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
强激光在非经典等离子体通道中的动力学特性研究
  • 批准号:
    11765017
  • 批准年份:
    2017
  • 资助金额:
    41.0 万元
  • 项目类别:
    地区科学基金项目
关于双曲方程解性态的研究
  • 批准号:
    11601236
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
极端强激光与等离子体相互作用中的非线性量子电动力学问题研究
  • 批准号:
    11664039
  • 批准年份:
    2016
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
相对论核物质的非线性特征及其对重离子核反应动力学的影响
  • 批准号:
    11665019
  • 批准年份:
    2016
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nonlinear numerical simulations of relativistic fluid systems.
相对论流体系统的非线性数值模拟。
  • 批准号:
    2128056
    2128056
  • 财政年份:
    2018
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Studentship
    Studentship
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
  • 批准号:
    356075-2013
    356075-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
  • 批准号:
    356075-2013
    356075-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
  • 批准号:
    356075-2013
    356075-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
  • 批准号:
    356075-2013
    356075-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 11.87万
    $ 11.87万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual