Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
基本信息
- 批准号:1068190
- 负责人:
- 金额:$ 29.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project concerns two questions about singularities. The first problem has two different incarnations: a first one in the algebro-geometric setting of graded sequences of ideals, and a second one, in the analytic setting of plurisubharmonic functions (in which context it was conjectured by Demailly and Koll\'{a}r, and it is known as the Openness Conjecture). The common point is that both versions reduce to understanding asymptotic versions of familiar invariants of singularities, such as the log canonical threshold, associated now to certain sequences of ideals. The first part of the project consists in the study of these asymptotic invariants, and of their connections to valuation theory. The second part will be devoted to a study of valuations from a point of view relevant to this problem. The second problem concerns connections between certain invariants of singularities in birational geometry (such as the log canonical threshold and multiplier ideals) and invariants introduced in commutative algebra, coming from tight closure theory (such as the F-pure threshold and the test ideals). There have been formulated precise conjectures regarding this correspondence via reduction to prime characteristic. This project concerns translating such conjectures into some more established questions regarding the Frobenius action on the cohomology of reductions of smooth projective varieties to positive characteristic, and then in trying to attack some special cases of these questions.Singularities appear naturally in the study of algebraic varieties, and a good understanding of singularities is important, for example, in the classification of higher-dimensional algebraic varieties. This project addresses two important open problems related to singularities. By reducing them to questions in different settings, the PI hopes to bring into action tools from other areas, such as valuation theory and arithmetic geometry. The reduction itself would be of interest, by highlighting connections between these different settings.
该项目涉及有关奇点的两个问题。第一个问题具有两个不同的化身:在plurisubharmonic函数的分析设置中,在代数的几何设置中,第一个问题是一个问题(在demailly和koll \'}的背景下,第二个是一个化身。普遍的观点是,这两个版本都简化为理解熟悉的奇异性不变性的渐近版本,例如对数规范阈值,现在与某些理想序列相关联。该项目的第一部分在于对这些渐近不变的研究及其与评估理论的联系。 第二部分将从与此问题相关的观点开始研究估值。第二个问题涉及在birational几何形状(例如原木规范阈值和乘数理想)中的某些不变性之间的联系与交换代数中引入的不变式之间的连接,来自紧密的封闭理论(例如F-Pure阈值和测试理想)。通过还原到主要特征,已经有关于这种对应关系的精确猜想。 This project concerns translating such conjectures into some more established questions regarding the Frobenius action on the cohomology of reductions of smooth projective varieties to positive characteristic, and then in trying to attack some special cases of these questions.Singularities appear naturally in the study of algebraic varieties, and a good understanding of singularities is important, for example, in the classification of higher-dimensional algebraic varieties.该项目解决了与奇点有关的两个重要开放问题。通过将它们减少到不同环境中的问题,PI希望从其他领域(例如估值理论和算术几何形状)带入行动工具。通过强调这些不同设置之间的联系,减少本身将引起人们的关注。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mustata其他文献
An irrational variant of the congruent number problem
全等数问题的无理变体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao - 通讯作者:
Jerome Dimabayao
The moduli spaces of stable parabolic λ-connections and their canonical coordinates (Joint works with M. Inaba and with S. Szabo)
稳定抛物线 λ 连接的模空间及其规范坐标(与 M. Inaba 和 S. Szabo 联合工作)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Ken-ichi Yoshida;Masa-Hiko Saito - 通讯作者:
Masa-Hiko Saito
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
The ring of modular forms of O(2,4;Z) with characters
带字符的 O(2,4;Z) 模形式环
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata;Yusuke Nakamura;Jerome Dimabayao;Atsuhira Nagano and Kazushi Ueda - 通讯作者:
Atsuhira Nagano and Kazushi Ueda
Mircea Mustata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mustata', 18)}}的其他基金
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
- 批准号:
2401041 - 财政年份:2024
- 资助金额:
$ 29.06万 - 项目类别:
Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 29.06万 - 项目类别:
Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
$ 29.06万 - 项目类别:
Continuing Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
- 批准号:
1701622 - 财政年份:2017
- 资助金额:
$ 29.06万 - 项目类别:
Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
- 批准号:
1401227 - 财政年份:2014
- 资助金额:
$ 29.06万 - 项目类别:
Standard Grant
Recent Advances in Algebraic Geometry
代数几何的最新进展
- 批准号:
1262798 - 财政年份:2013
- 资助金额:
$ 29.06万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265256 - 财政年份:2013
- 资助金额:
$ 29.06万 - 项目类别:
Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
- 批准号:
0968646 - 财政年份:2010
- 资助金额:
$ 29.06万 - 项目类别:
Standard Grant
相似国自然基金
偏振莫比乌斯带奇异性与康普顿散射的光电耦合动力学
- 批准号:12332002
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
非定常奇异摄动问题的各向异性时空自适应有限元方法
- 批准号:12301467
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具奇异性偏微分方程谱元法和间断谱元法的误差估计
- 批准号:12271128
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
考虑剪切荷载及变形局部化时灾变破坏的幂律奇异性前兆及灾变预测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Singularities of surfaces and hypersurfaces in Lorentzian space forms
洛伦兹空间形式中曲面和超曲面的奇异性
- 批准号:
17H02839 - 财政年份:2017
- 资助金额:
$ 29.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
F-singularities and singularities in birational geometry in characteristic zero(Fostering Joint International Research)
F-奇点和特征零双有理几何中的奇点(促进国际联合研究)
- 批准号:
15KK0152 - 财政年份:2016
- 资助金额:
$ 29.06万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
F-singularities and singularities in birational geometry in characteristic zero
F-奇点和特征零双有理几何中的奇点
- 批准号:
26400039 - 财政年份:2014
- 资助金额:
$ 29.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surfaces with singularities in space-times and Weierstrass-type representation formulas
时空奇点表面和Weierstrass型表示公式
- 批准号:
26400066 - 财政年份:2014
- 资助金额:
$ 29.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1523233 - 财政年份:2014
- 资助金额:
$ 29.06万 - 项目类别:
Standard Grant