Theory and Solution Methods for Chemical Production Scheduling
化工生产调度理论与求解方法
基本信息
- 批准号:1066206
- 负责人:
- 金额:$ 31.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Maravelias, Christos Institution: University of WisconsinProposal Number: 1066206Title: Theory and Solution Methods for Chemical Production SchedulingTo remain competitive in todays global environment, US chemical companies have moved towards product customization and diversification, which in turn have resulted in a large number of low-volume, high-value products. Furthermore, in an effort to achieve higher utilization of resources, chemical manufacturers have started to employ multiproduct/multipurpose facilities. In addition to higher resource utilization, the flexibility of these facilities allows for lower inventory costs and better responsiveness to demand fluctuations. However, these advantages can be achieved only if effective optimization-based production scheduling methodologies, which could uncork the hidden potential of multiproduct manufacturing, are developed. The two major bottlenecks in the development and adoption of such methods appear to be: a) the lack of an unambiguous problem statement, which prohibits the development of a unified information technology framework; and b) the computational performance of existing optimization-based methods. The goal of this research is the development of new theory and solution methods that will address the second challenge.Intellectual Merit The intellectual merit is in the analysis of existing frameworks, the development of the underlying optimization theory, and the formulation of advanced solution strategies for chemical production scheduling. This project will focus on the following five areas:a) Method classification formulate a systematic classification of general scheduling approaches and modeling techniques.b) Computational study perform an extensive computational study of various approaches using more than 5,000 problem instances. c) Theory development develop mathematical properties regarding the tightness of scheduling mixed-integer programming formulations.d) Novel Modeling Methods use the inherent structure of scheduling models and our theoretical results to explore ways of strengthening these formulations.e) Solution algorithms based on the computational and theoretical results, study new decomposition schemes and explore new search methods and design algorithms that harness the new capabilities offered by parallel computing and cyberinfrastructure.Broader ImpactThis research will advance the state of the art in the use of optimization methodologies in process operations, thereby opening new avenues of research in process systems engineering (PSE). Through the involvement of the graduate student working on this project, the results of will be used to develop educational material for a graduate level course the PI teaches. Furthermore, this material will be evaluated for effectiveness and disseminated through the Engineering Pathway and the National Science Digital Library. Both the codes and the library of problems developed during this project will be made publicly available so that others in the field can replicate (or improve upon) the results. This project will also offer the PI an opportunity to further develop his undergraduate research program. Specifically, undergraduate students will use some of the cyber-infrastructure tools developed in this effort to carry out computational studies.Potentially Transformative ResearchThis research is a major departure from previous work in this area in that it will be based upon a theoretical study of the structure of mixed-integer programming formulations and the derivation of mathematical properties on their polyhedral properties. This is a subject that has received practically no attention to this point in the PSE literature. Therefore, if successful, the research will lay the foundations of a new, theoretically rigorous approach to production scheduling, which could lead to significant advances in solving broad families of operational problems.
PI:Maravelias,Christos机构:威斯康星大学港口编号:1066206TITLE:化学生产计划的理论和解决方案方法在当今的全球环境中保持竞争力,美国化学公司已朝着产品定制和多元化发展,这又导致了大量的低容量的高价值产品。此外,为了实现更高的资源利用,化学制造商已开始使用多种方法/多功能设施。除了较高的资源利用外,这些设施的灵活性还可以降低库存成本和对需求波动的更好响应能力。但是,只有在开发有效的基于优化的生产调度方法的方法(可能会开发出多物制造的隐藏潜力)的情况下,才能实现这些优势。这种方法开发和采用的两个主要瓶颈似乎是:a)缺乏明确的问题陈述,这禁止开发统一的信息技术框架; b)现有基于优化的方法的计算性能。这项研究的目的是开发新的理论和解决方案方法,这些方法将解决第二项挑战。智能优点是对现有框架的分析,基础优化理论的发展以及为高级解决方案策略的制定策略的分析。化学生产计划。该项目将重点关注以下五个领域:a)方法分类制定了对一般调度方法和建模技术的系统分类。B)计算研究对使用超过5,000个问题实例进行了各种方法进行广泛的计算研究。 c)理论发展发展了数学特性,涉及调度混合构成编程公式的紧密性。d)新型建模方法使用调度模型的固有结构和我们的理论结果来探索加强这些配方的方法。e)基于计算算法的解决方案算法和理论结果,研究新的分解方案并探索新的搜索方法和设计算法,以利用并行计算和CyberinFrastructure提供的新功能。BOADERIMPACTION过程系统工程研究(PSE)的新途径。通过参与该项目的研究生的参与,将用于开发PI教学的研究生级课程的教育材料。此外,将评估该材料的有效性,并通过工程途径和国家科学数字图书馆进行分发。该项目期间开发的问题和问题库都将公开可用,以便现场的其他人可以复制(或改进)结果。该项目还将为PI提供进一步开发其本科研究计划的机会。具体而言,本科生将使用在这项工作中开发的一些网络基础设施工具来进行计算研究。潜在的变革性研究本研究与该领域的先前工作有很大的不同,因为它将基于对结构的理论研究混合智能编程公式以及数学特性在其多面体特性上的推导。这是一个几乎没有关注PSE文献这一点的主题。因此,如果成功的话,这项研究将奠定一种新的,理论上严格的生产计划的基础,这可能会导致在解决广泛的运营问题家庭方面取得重大进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Maravelias其他文献
SYSTEMS ENGINEERING FOR SUSTAINABILITY IN A GLOBALIZED WORLD: RESOURCES, ECOSYSTEMS, BOUNDARIES
全球化世界可持续发展的系统工程:资源、生态系统、边界
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
B. Bakshi;Christos Maravelias - 通讯作者:
Christos Maravelias
Christos Maravelias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Maravelias', 18)}}的其他基金
Collaborative Proposal: Feedback Control Theory, Computation, and Design for Scheduling and Blending
协作提案:用于调度和混合的反馈控制理论、计算和设计
- 批准号:
2026980 - 财政年份:2020
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant
GOALI: Inventory Routing in the Chemical Industry
GOALI:化工行业的库存路由
- 批准号:
1264096 - 财政年份:2013
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant
Pan American Advanced Studies Institute on Process Modeling and Optimization for Energy and Sustainability; Brazil; July 12-22, 2011
泛美能源和可持续性过程建模与优化高级研究所;
- 批准号:
1036098 - 财政年份:2011
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant
GOALI: Cooperation-based Optimization of the Industrial Gas Supply Chain
GOALI:以合作为基础的工业气体供应链优化
- 批准号:
0931835 - 财政年份:2009
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant
CAREER: Modeling and Optimization of the Pharmaceutical Research and Development and Supply Chain
职业:药品研发和供应链的建模和优化
- 批准号:
0547443 - 财政年份:2006
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant
相似国自然基金
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
- 批准号:82371986
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
- 批准号:32371621
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
- 批准号:72272082
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
激光加速束斑异型化解决方案的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
约束作用下金属锂全电池负极退化机理原位监测及解决方案
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 31.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory and Solution Methods for Generalized Nash Equilibrium Problems Governed by Networks of Nonlinear Hyperbolic Conservation Laws
非线性双曲守恒律网络治理的广义纳什均衡问题的理论与求解方法
- 批准号:
423771718 - 财政年份:2019
- 资助金额:
$ 31.44万 - 项目类别:
Priority Programmes
Viscosity solution theory for quasilinear PDEs, free boundary problems and thier applications
拟线性偏微分方程的粘度解理论、自由边界问题及其应用
- 批准号:
18K13436 - 财政年份:2018
- 资助金额:
$ 31.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of the viscosity solution theory connecting continuous problems and discrete problems
连接连续问题和离散问题的粘性解理论的构建
- 批准号:
16K17621 - 财政年份:2016
- 资助金额:
$ 31.44万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Fusion and development of multiconfigurational electronic state theory and integral equation theory suitable for quasidegenerate systems in solution
适用于溶液中准副生成系统的多构型电子态理论与积分方程理论的融合与发展
- 批准号:
15K05392 - 财政年份:2015
- 资助金额:
$ 31.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)