G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework

G

基本信息

  • 批准号:
    1065081
  • 负责人:
  • 金额:
    $ 30.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Abstract - Machiraju, Rangarajan, and ThompsonAs computer power continues to increase, the complexity of simulations also increases thereby producing datasets of unprecedented size. Without effective analysis tools, results from these large-scale simulations cannot be utilized to their fullest extent. This research addresses the problem of large-data visualization and exploration by employing interactive multi-scale machine learning, which exploits an efficient feature-based, multi-resolution representation of the data. The investigators are leveraging methods from the field of machine learning to perform two distinct tasks: identify regions of interest and enhance robustness of feature detection algorithms. The primary outcome of this effort is the realization of a framework for exploring large datasets. Further, this work is introducing a large body of work in machine learning to the field of visualization. Successful completion of this research will help overcome the brittleness of existing visualization methods and foster expedient discovery in many areas of science and engineering.The multi-resolution techniques developed here will employ a two-fold strategy. First, semi-supervised learning based on training with the domain expert is used to develop strategies for selective spatial and temporal refinement of the data. A classifier is constructed to tag the output of the coarse resolution feature detection (i.e. regions) as either interesting or not interesting. Then at the finest scale, interesting local data chunks containing features of interest are identified for further analysis. Second, several local feature detection algorithms, or weak classifiers, are combined into a single, more robust compound classifier using adaptive boosting, or AdaBoost, and a data adaptive variant called CAVIAR that facilitates validated feature detection. Ideally, the compound classifier combines the best of all weak classifiers as they respond to the underlying physical signal. This research is demonstrating the effectiveness of these methods by applying existing local detection algorithms for visualizing vortices in turbulent flow fields.
摘要-Machiraju,Rangarajan和Thompsonas计算机功率继续增加,模拟的复杂性也增加,从而产生了前所未有的大小的数据集。 没有有效的分析工具,这些大规模模拟的结果将无法达到最大程度。这项研究通过采用交互式多尺度机器学习来解决大数据可视化和探索的问题,该机器学习利用了基于数据的有效特征的多分辨率表示。研究人员正在利用机器学习领域的方法执行两个不同的任务:确定感兴趣的区域并增强特征检测算法的鲁棒性。这项工作的主要结果是实现了探索大型数据集的框架。此外,这项工作将机器学习中的大量工作引入了可视化领域。这项研究的成功完成将有助于克服现有可视化方法的脆弱性,并在科学和工程的许多领域促进平稳发现。此处开发的多分辨率技术将采用两倍的策略。首先,基于与域专家的培训进行的半监督学习用于制定选择性空间和时间精致数据的策略。 分类器的构建是为了将粗分辨率特征检测(即区域)的输出标记为有趣或不有趣的输出。然后,在最佳规模上,确定了包含感兴趣特征的有趣的本地数据块,以进行进一步分析。其次,使用自适应增强或Adaboost的几种局部特征检测算法或弱分类器将其合并为一个更健壮的复合分类器,以及一个称为CAVIAR的数据自适应变体,可促进经过验证的功能检测。理想情况下,复合分类器将所有弱分类器中的最好的分类器响应在响应基本的物理信号时。这项研究通过应用现有的局部检测算法来可视化湍流场中的涡旋,从而证明了这些方法的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anand Rangarajan其他文献

Learning an atlas from unlabeled point-sets
从未标记的点集学习地图集
New Method of Probability Density Estimation with Application to Mutual Information Based Image Registration
概率密度估计新方法及其在基于互信息的图像配准中的应用
Scalable Machine Learning Approaches for Neighborhood Classification Using Very High Resolution Remote Sensing Imagery
使用超高分辨率遥感图像进行邻里分类的可扩展机器学习方法
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Sethi;Yupeng Yan;Anand Rangarajan;Ranga Raju Vatsavai;S. Ranka
  • 通讯作者:
    S. Ranka
An application of the stationary phase method for estimating probability densities of function derivatives
固定相法在估计函数导数概率密度中的应用
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karthik S. Gurumoorthy;Anand Rangarajan;Arunava Banerjee
  • 通讯作者:
    Arunava Banerjee
Bayesian image reconstruction for transmission tomography using mixture model priors and deterministic annealing algorithms
使用混合模型先验和确定性退火算法进行透射断层扫描的贝叶斯图像重建
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Hsiao;Anand Rangarajan;G. Gindi
  • 通讯作者:
    G. Gindi

Anand Rangarajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anand Rangarajan', 18)}}的其他基金

EAGER: Parallel Semi-supervised Machine Learning for Volumetric Datasets
EAGER:体积数据集的并行半监督机器学习
  • 批准号:
    1743050
  • 财政年份:
    2017
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Standard Grant
RI: EAGER: Complex Wave Formulations for Shape Analysis
RI:EAGER:用于形状分析的复杂波形公式
  • 批准号:
    1143963
  • 财政年份:
    2011
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Standard Grant
Relational Shape Matching for Registration and Recognition
用于注册和识别的关系形状匹配
  • 批准号:
    0307712
  • 财政年份:
    2003
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Continuing Grant
An Integrated Pose and Correspondence Approach to Non-rigid Image Matching
非刚性图像匹配的综合姿态和对应方法
  • 批准号:
    0196457
  • 财政年份:
    2001
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Continuing Grant
An Integrated Pose and Correspondence Approach to Non-rigid Image Matching
非刚性图像匹配的综合姿态和对应方法
  • 批准号:
    9906081
  • 财政年份:
    1999
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

G&V: Medium: Collaborative Research: A Unified Approach to Material Appearance Modeling
G
  • 批准号:
    1064410
  • 财政年份:
    2011
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Continuing Grant
G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework
G
  • 批准号:
    1065107
  • 财政年份:
    2011
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Continuing Grant
G&V: Medium: Collaborative Research: Contact-Based Human Motion Acquisition and Synthesis
G
  • 批准号:
    1065384
  • 财政年份:
    2011
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Continuing Grant
G&V: Medium: Collaborative Research: Contact-Based Human Motion Acquisition and Synthesis
G
  • 批准号:
    1064983
  • 财政年份:
    2011
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Standard Grant
G&V: Medium: Collaborative Research: A Unified Approach to Material Appearance Modeling
G
  • 批准号:
    1064427
  • 财政年份:
    2011
  • 资助金额:
    $ 30.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了