Collaborative Proposal: ABI Innovation: Model-data synthesis and forecasting across the upper Midwest: Partitioning uncertainty and environmental heterogeneity in ecosystem carbon

合作提案:ABI 创新:中西部上游地区的模型数据综合和预测:划分生态系统碳的不确定性和环境异质性

基本信息

  • 批准号:
    1062547
  • 负责人:
  • 金额:
    $ 66.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The University of Illinois at Urbana-Champaign and the University of Wisconsin - Madison are awarded collaborative grants to develop an integrated ecological bioinformatics toolbox dubbed the Predictive Ecosystem Analyzer (PEcAn) which consists of: 1) a scientific workflow system to manage the immense amounts of publicly-available environmental data and 2) a Bayesian data assimilation system to synthesize this information within state-of-the-art ecosystems models. This project is motivated by the fact that many of the most pressing questions about global change are not necessarily limited by the need to collect new data as much as by our ability to synthesize existing data. This project seeks to improve this ability by developing a framework for integrating multiple data sources in a sensible manner. PEcAn is initially being developed around the Ecosystem Demography model (ED), one of the few terrestrial biosphere models capable of integrating a large suite of observational data at different spatial and temporal scales, but is designed to interface with a wide class of ecosystem models. The output of the data assimilation system will be a regional-scale high-resolution estimate of both the terrestrial carbon cycle and plant biodiversity based on the best available data and with a robust accounting of the uncertainties involved. The workflow system will allow ecosystem modeling to be more reproducible, automated, and transparent in terms of operations applied to data, and thus ultimately more comprehensible to both peers and the public. It will reduce the redundancy of effort among modeling groups, facilitate collaboration, and make models more accessible the rest of the research community. As a test bed for the development and application of these ecological bioinformatics tools, the project will focus on the temperate/boreal transition zone in northern Wisconsin, a region that is expected to show large climate change responses and is arguably the most data-rich region in the country. The tools developed here will enable us to partition carbon flux and pool variability in space and time and to attribute the regional-scale responses to specific biotic and abiotic drivers. The data-assimilation framework will partition different sources of uncertainty, which will enable a better understanding of which are limiting our inference, and provide a more complete propagation of uncertainty into model forecasts. ED will then be used to forecast regional-scale dynamics under decadal to centennial scale climate change scenarios. This approach will allow us to assess for the first time how much our uncertainty about the current state of the ecosystem impacts our ability to anticipate the future. The tools developed in this project will not only find broad use in the ecological community but will also have direct relevance to important policy and management debates about climate change mitigation and carbon credit markets. Specifically, it will allow a repeatable, scientifically defensible, and temporally up-to-date analysis of the state of the carbon cycle base on a broad synthesis of the best available data. Within the scientific community, these tools will be broadly applicable to numeous ecosystem models and facilitate the use and evaluation of predictive models by non-modelers. The tools developed here are also well-positioned to synthesize the large volumes of information coming out of a number of NSF-supported research networks, such as the LTER network and NEON. To encourage use and development, we will make open-source code, documentation, and tutorials available on the project website, pecanproject.org. To further disseminate these tools and methods, this project also has a strong education component consisting of three elements: 1) the development of a graduate seminar on eco-informatics that will be offered in both face-to-face and online formats, 2) the participation of the PIs in two existing summer courses, one of which is offered at a tribal college located within our study region, and 3) direct training of students and postdocs directly involved with the project.
伊利诺伊大学伊利诺伊大学乌尔巴纳 - 坎佩尼大学和威斯康星大学 - 麦迪逊大学获得合作赠款,以开发一种综合的生态生物信息信息箱,称为预测生态系统分析仪(PECAN),该工具箱由:1)组成:1)一个科学工作流程,以管理在公共环境数据中的巨大范围,以管理综合数据和2)贝尔斯的信息。最先进的生态系统模型。该项目的激励是因为许多关于全球变化的最紧迫问题不一定受到收集新数据的限制,而不是我们合成现有数据的能力。该项目旨在通过开发一个以明智的方式建立多个数据源的框架来提高这种能力。最初是围绕生态系统人口统计模型(ED)开发的,这是少数能够在不同的空间和时间尺度上整合大量观察数据的陆地生物圈模型之一,但旨在与广泛的生态系统模型接口。数据同化系统的输出将是基于最佳可用数据的区域规模的高分辨率估计值,以及对所涉及的不确定性的强大核算。 工作流程系统将使生态系统建模在应用于数据的操作方面更可重复,自动化和透明,因此最终对同行和公众更加理解。 它将减少建模小组之间的努力冗余,促进协作,并使模型在研究界的其他成员中更容易访问。作为这些生态生物信息学工具开发和应用的测试床,该项目将重点放在威斯康星州北部的温带/北方过渡区,该地区有望显示出较大的气候变化反应,并且可以说是该国数据最丰富的地区。这里开发的工具将使我们能够在时空的碳通量和池变异性分开,并将区域尺度响应归因于特定的生物和非生物驱动器。数据辅助框架将把不同的不确定性来源分开,这将使人们能够更好地理解哪些不确定性限制了我们的推论,并将不确定性更完整地传播到模型预测中。然后,ED将用于预测在十年级的气候变化情景下的区域尺度动力学。 这种方法将使我们第一次评估我们对生态系统当前状态的不确定性影响我们预期未来的能力。该项目中开发的工具不仅将在生态界找到广泛的使用,而且还将与重要的政策和管理辩论有关的有关缓解气候变化和碳信贷市场的辩论具有直接相关性。具体而言,它将允许对最佳可用数据的广泛合成碳循环基础的状态进行可重复的,科学的辩护和时间最新的分析。在科学界,这些工具将广泛适用于数字生态系统模型,并促进非模型的使用和评估。此处开发的工具还具有良好的位置,可以合成许多NSF支持的研究网络(例如LTER Network和Neon)的大量信息。为了鼓励使用和开发,我们将在项目网站pecanproject.org上提供开源代码,文档和教程。为了进一步传播这些工具和方法,该项目还具有强大的教育组成部分:1)开发有关生态信息学的研究生研讨会,将以面对面和在线格式提供,2)PIS在两个现有的夏季课程中参与了两个现有的夏季课程,其中一个在我们的研究区域内提供了一个直接的培训,并直接培训学生,并在3个专业的培训中进行培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenton McHenry其他文献

Brown Dog: Making the Digital World a Better Place, a Few Files at a Time
Brown Dog:一次处理几个文件,让数字世界变得更美好
  • DOI:
    10.1145/3219104.3219132
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sandeep Puthanveetil Satheesan;Jay Alameda;Shannon Bradley;M. Dietze;B. Galewsky;Gregory Jansen;R. Kooper;Praveen Kumar;Jong Lee;R. Marciano;Luigi Marini;B. Minsker;Chris Navarro;A. Schmidt;M. Slavenas;W. Sullivan;Bing Zhang;Yan Zhao;Inna Zharnitsky;Kenton McHenry
  • 通讯作者:
    Kenton McHenry
Learning to Segment Images Into Material and Object Classes
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenton McHenry
  • 通讯作者:
    Kenton McHenry
Towards a Universal, Quantifiable, and Scalable File Format Converter
迈向通用、可量化和可扩展的文件格式转换器
BRACELET: Hierarchical Edge-Cloud Microservice Infrastructure for Scientific Instruments’ Lifetime Connectivity
BRACELET:用于科学仪器终身连接的分层边缘云微服务基础设施
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Phuong Nguyen;Steven Konstanty;Tarek Elgamal;Todd Nicholson;Stuart Turner;Patrick Su;K. Nahrstedt;T. Spila;R. Campbell;J. Dallesasse;Michael Chan;Kenton McHenry
  • 通讯作者:
    Kenton McHenry
4CeeD: Real-Time Data Acquisition and Analysis Framework for Material-Related Cyber-Physical Environments
4CeeD:材料相关网络物理环境的实时数据采集和分析框架

Kenton McHenry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenton McHenry', 18)}}的其他基金

Collaborative Research: Frameworks: DeCODER (Democratized Cyberinfrastructure for Open Discovery to Enable Research)
协作研究:框架:DeCODER(用于开放发现以支持研究的民主化网络基础设施)
  • 批准号:
    2209863
  • 财政年份:
    2022
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Continuing Grant
NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure
NNA 轨道 1:协作研究:永久冻土发现网关:通过大数据、人工智能和网络基础设施导航新的北极苔原
  • 批准号:
    1927729
  • 财政年份:
    2019
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
Collaborative Research: CSSI: Framework: Data: Clowder Open Source Customizable Research Data Management, Plus-Plus
协作研究:CSSI:框架:数据:Clowder 开源可定制研究数据管理,Plus-Plus
  • 批准号:
    1835834
  • 财政年份:
    2018
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting
合作研究:ABI 开发:PEcAn 项目:生态预测社区平台
  • 批准号:
    1457890
  • 财政年份:
    2015
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: Brown Dog
CIF21 DIBB:棕色狗
  • 批准号:
    1261582
  • 财政年份:
    2013
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Cooperative Agreement
EAGER: Digging into Image Data to Answer Authorship Related Questions
EAGER:深入研究图像数据来回答与作者身份相关的问题
  • 批准号:
    1039385
  • 财政年份:
    2010
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant

相似国自然基金

指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
  • 批准号:
    32371102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
  • 批准号:
    61773397
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
构造类型专家系统及其开发工具的研究
  • 批准号:
    68875006
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

COLLABORATIVE PROPOSAL:ABI DEVELOPMENT: AN INTEGRATED PLATFORM FOR RETRIEVAL, VISUALIZATION AND ANALYSIS OF 3D MORPHOLOGY FROM DIGITAL BIOLOGICAL COLLECTIONS
合作提案:ABI 开发:数字生物馆藏 3D 形态检索、可视化和分析的综合平台
  • 批准号:
    1759839
  • 财政年份:
    2018
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
Collaborative Proposal: ABI Development: An Integrated Platform for Retrieval, Visualization and Analysis of 3D Morphology From Digital Biological Collections
合作提案:ABI 开发:数字生物馆藏 3D 形态检索、可视化和分析的集成平台
  • 批准号:
    1759883
  • 财政年份:
    2018
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
COLLABORATIVE PROPOSAL: ABI DEVELOPMENT: AN INTEGRATED PLATFORM FOR RETRIEVAL, VISUALIZATION AND ANALYSIS OF 3D MORPHOLOGY FROM DIGITAL BIOLOGICAL COLLECTIONS
合作提案:ABI 开发:用于从数字生物馆藏中检索、可视化和分析 3D 形态的综合平台
  • 批准号:
    1759637
  • 财政年份:
    2018
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
Collaborative Proposal: ABI Innovation:A Graph Based Approach for the Genome Wide Prediction of Conditionaly Essential Genes
合作提案:ABI Innovation:基于图形的条件必需基因全基因组预测方法
  • 批准号:
    1660648
  • 财政年份:
    2017
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
Collaborative proposal: ABI Sustaining: The Environmental-Data Automated Track Annotation (Env-DATA) system
合作提案:ABI Sustaining:环境数据自动轨迹注释(Env-DATA)系统
  • 批准号:
    1564382
  • 财政年份:
    2016
  • 资助金额:
    $ 66.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了