CAREER: Dynamic Simulations of Reconfigurable Complex Fluids From "Janus" and "Catalytically-Driven" Colloidal Particles
职业:“Janus”和“催化驱动”胶体粒子的可重构复杂流体的动态模拟
基本信息
- 批准号:1055284
- 负责人:
- 金额:$ 40.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cordova 1055284 This CAREER development plan combines the expertise of the PI in low Reynolds number hydrodynamics and colloidal suspensions to study the emerging field of complex fluids based on suspensions of two-faced Janus particles - particles which have two distinct sides - that depending on their surface functionality could lead to novel material properties, aggregation/self-ordering abilities, or to autonomous behaviors using on-board chemical motors operating far from equilibrium. Research and educational activities are designed to elucidate important aspects of reconfigurable complex fluids - active materials that could change and relax their structure with minimum or no external intervention using as precursors Janus and catalytically-driven colloidal particles. The research efforts are divided in two main tasks. The first one focuses on studying the motion, rheology, and structural organization of Janus particle suspensions guided by a combination of fluid flows and external forces. Different behaviors are expected depending on the interparticle force between the Janus faces of the particles (e.g., hard sphere, attractive, soft). The second research task aims at understanding collective motion of catalytically-driven Janus particle suspensions. A simple colloidal approach to autonomous motion via chemical reactions will be used and implemented based on classic multicomponent diffusion and depletion flocculation theory. Simple elementary dynamic units operating with specific rules and exploiting chemotaxis will be proposed as elements for future reconfigurable materials. These efforts will be accomplished by Brownian/Stokesian dynamics simulations and experiments with collaborating partners. The education and outreach components of the plan aim to involve the participation and education of Hispanics from the K-12 to the graduate level. A graduate course in particle dynamics in anisotropic colloidal suspensions will be developed. Emerging topics in colloidal hydrodynamics will be incorporated into an existing undergraduate fluid mechanics course. Modules illustrating autonomously-moving Janus particles will be developed and implemented using advanced multimedia techniques. Additional education activities include workshops to help students strengthen their communications skills and improve their preparation for the Graduate Record Examination (GRE). Intellectual Merit: This work will provide a level of fundamental understanding of asymmetrically functionalized colloidal particles that has heretofore been missing, a lack which has thus far prevented the full development and use of Janus particle technologies - by leading to improved materials, sensors, and drug delivery. The measurement of their rheological behavior at different particle concentrations and flow conditions will broadly impact research on anisotropic colloids by providing a solid basis, basic tools, and knowledge that can be applied in the processing and use of these technologies. On the other hand, the study of catalytically-driven motion of Janus particles will lead to the discovery of interesting material properties and behaviors, such as synthetic chemotaxis and predator-prey cooperative motions that are usually found in nature. The research plan aims at providing a necessary interrogation of catalytically-driven particle motion using Brownian/Stokesian dynamics simulations, particularly at conditions challenging to address experimentally (e.g., concentrated quantities, limited control volumes). Simple models of dynamic units based on catalytically-driven motion that could be exploited for the design and synthesis of reconfigurable complex fluids are proposed. Broader Impact: The research will substantially impact several scientific and technological communities including colloids and complex fluids, microfluidics and physics of interphases. The integrated research/teaching plan will teach and train underrepresented students in topics related to colloidal sciences and engineering. The site of the project, University of Puerto Rico-Mayagüez (UPRM), will facilitate the participation and education of students from underrepresented groups. The teaching and outreach components of the project involve initiatives in colloidal hydrodynamics, engineering materials, and transport phenomena.
Cordova 1055284该职业发展计划结合了PI在较低的雷诺数中的专业知识,基于两面珍珠粒子的悬浮液(具有两个不同方面)的悬浮液(根据表面功能的两种不同方面的悬浮液)来研究复杂烟的新出现领域,这些粒子可以通过新的材料属性,或自动效果,从平衡。研究和教育活动旨在阐明可重新配置的复杂流体的重要方面 - 活跃的材料,可以通过最小或没有外部干预来改变和放松其结构,并使用作为前体Janus和催化驱动的胶体颗粒。研究工作分为两个主要任务。第一个重点是研究由流体流和外力组合的Janus粒子悬浮液的运动,流变和结构组织。预计会根据颗粒的Janus面之间的颗粒室内力(例如硬球,吸引人,柔软)。第二项研究任务旨在了解催化驱动的Janus粒子悬浮液的集体运动。通过经典的多组分扩散和部署拼接理论,将使用和实施一种简单的通过化学反应进行自动运动的胶体方法。将提出具有特定规则并利用趋化性的简单基本动态单元作为将来可重构材料的要素。这些努力将由Brownian/Stokesian Dynamics模拟以及与合作伙伴进行实验。该计划的教育和宣传组成部分旨在涉及从K-12到研究生水平的西班牙裔参与和教育。将开发各向异性胶体悬浮液中粒子动力学的研究生课程。胶体流体动力学的新兴主题将纳入现有的本科液体机械课程中。使用高级多媒体技术将开发和实施说明自主移动的Janus颗粒的模块。其他教育活动包括帮助学生加强他们的沟通技巧并改善研究生记录考试(GRE)的准备工作。智力优点:这项工作将提供对迄今缺失的不对称功能化胶体颗粒的基本理解,而缺乏,这已经阻止了Janus粒子技术的全面发展和使用 - 通过导致改进的材料,传感器和药物输送。在不同的粒子浓度和流动条件下,其流变行为的测量将通过提供可应用的稳定基础,基本工具和知识来广泛影响对各向异性胶体的研究,这些基本工具和知识可用于处理和使用这些技术。另一方面,对Janus颗粒的催化驱动运动的研究将导致发现有趣的材料特性和行为,例如通常在自然界中发现的合成趋化性和捕食者 - 捕集的合作运动。该研究计划旨在使用Brownian/Stokesian动力学模拟对催化驱动的粒子运动进行必要的询问,尤其是在条件下挑战以实验解决的挑战(例如,浓缩量,有限的控制量)。提出了基于催化驱动运动的动态单元的简单模型,可以探索用于设计和合成可重新配置的复杂流体的简单模型。更广泛的影响:这项研究将大大影响几个科学和技术社区,包括菌落和复杂的流体,微流体和相互作用的物理学。综合研究/教学计划将教导和培训代表性不足的学生与胶体科学和工程有关的主题。该项目的地点是波多黎各大学(UPRM),将支持来自代表性不足的团体的学生的参与和教育。该项目的教学和外展成分涉及胶体流体力学,工程材料和运输现象中的倡议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ubaldo Cordova其他文献
Ubaldo Cordova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ubaldo Cordova', 18)}}的其他基金
LSAMP BD: University Of Puerto Rico -Mayaguez, Puerto Rico Louis Stokes Alliance For Minority Participation
LSAMP BD:波多黎各大学-马亚圭斯,波多黎各路易斯斯托克斯少数族裔参与联盟
- 批准号:
1906130 - 财政年份:2020
- 资助金额:
$ 40.34万 - 项目类别:
Standard Grant
Wisconsin - Puerto Rico Partnership for Research and Education in Materials [Wi(PR)2EM]
威斯康星州 - 波多黎各材料研究和教育伙伴关系 [Wi(PR)2EM]
- 批准号:
1827894 - 财政年份:2018
- 资助金额:
$ 40.34万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic Clustering and Rheology of Magnetic Janus Particles with Shifted Dipoles
合作研究:偶极子移动的磁性 Janus 粒子的动态聚类和流变学
- 批准号:
1705656 - 财政年份:2017
- 资助金额:
$ 40.34万 - 项目类别:
Standard Grant
REU Site: Research Experiences for Undergraduates in Reconfigurable and Multifunctional Soft Materials at UPRM
REU 网站:UPRM 本科生可重构和多功能软材料研究经验
- 批准号:
1460704 - 财政年份:2015
- 资助金额:
$ 40.34万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
- 批准号:
1510949 - 财政年份:2015
- 资助金额:
$ 40.34万 - 项目类别:
Standard Grant
相似国自然基金
变化环境下番茄生长与品质对水分胁迫的响应及功能结构动态模拟
- 批准号:52309069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全细胞模型浮动有限元方法的动态模拟
- 批准号:22373101
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
气候与竞争对人工落叶松树冠和节子动态的影响及模拟分析
- 批准号:32301581
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植被动态水文调节的黄河流域高温干旱复合风险模拟研究
- 批准号:42377460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于粒子模拟和机器学习方法的单链动态拓扑缠结的理论研究
- 批准号:22373022
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Searching druggable target sites by developing refined molecular dynamic simulations
通过开发精细的分子动力学模拟来搜索可成药的靶位点
- 批准号:
22K18383 - 财政年份:2022
- 资助金额:
$ 40.34万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Advanced Constitutive Modelling of Soils for Characterization of Seismic Hazard through Nonlinear Dynamic Simulations
通过非线性动态模拟对地震灾害进行先进的土壤本构建模
- 批准号:
RGPIN-2017-05756 - 财政年份:2022
- 资助金额:
$ 40.34万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Exploring System-Wide Events on Complex Fault Networks using Fully-Dynamic 3D Earthquake Cycle Simulations
协作研究:使用全动态 3D 地震周期模拟探索复杂故障网络上的系统范围事件
- 批准号:
2053405 - 财政年份:2021
- 资助金额:
$ 40.34万 - 项目类别:
Interagency Agreement
Studies on Multipurpose Distributed Constraint Optimization Problems under Dynamic Stochastic Environments with Disaster Relief Simulations
动态随机环境下多用途分布式约束优化问题与救灾模拟研究
- 批准号:
21K12039 - 财政年份:2021
- 资助金额:
$ 40.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Constitutive Modelling of Soils for Characterization of Seismic Hazard through Nonlinear Dynamic Simulations
通过非线性动态模拟对地震灾害进行先进的土壤本构建模
- 批准号:
RGPIN-2017-05756 - 财政年份:2021
- 资助金额:
$ 40.34万 - 项目类别:
Discovery Grants Program - Individual