AF: Small: Solving Linear Differential in Terms of Special Functions

AF:小:用特殊函数求解线性微分

基本信息

  • 批准号:
    1017880
  • 负责人:
  • 金额:
    $ 39.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Differential equations have numerous applications in science and engineering. In this project, new algorithms will be developed to compute exact solutions of linear differential equations. The project consists of two components, a top-down approach and a bottom-up approach. The bottom-up approach is to develop an algorithm for each particular type of solutions. In contrast, the top-down algorithms are not specific to any particular type of solution, instead, the top-down algorithms aim to reduce an equation to one that is easier to solve. This complements the bottom-up approach in several ways. By reducing to an easier equation, the top-down approach can drastically reduce the computation time it takes to solve the equation. Moreover, the top-down approach also reduces the number of algorithms need to be developed and implemented in the bottom-up approach; only equations that can not be reduced any further need to be treated.
微分方程在科学和工程中有许多应用。在该项目中,将开发新的算法来计算线性微分方程的精确解决方案。 该项目由两个组件组成,一种自上而下的方法和一种自下而上的方法。 自下而上的方法是为每种特定类型的解决方案开发算法。 相反,自上而下的算法不是任何特定类型的解决方案的特定特定的,而是自上而下的算法旨在将方程式减少到更易于求解的方程式。 这以几种方式补充了自下而上的方法。 通过简化方程式,自上而下的方法可以大大减少求解方程所需的计算时间。 此外,自上而下的方法还减少了在自下而上的方法中需要开发和实现算法的数量。只有无法减少任何进一步需要的方程式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark van Hoeij其他文献

Arithmetic identities characterising Heun functions reducible to hypergeometric functions
表征 Heun 函数可简化为超几何函数的算术恒等式
Dihedral Gauss hypergeometric functions
二面高斯超几何函数
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V.Raimundas;Mark van Hoeij;R. Vidunas
  • 通讯作者:
    R. Vidunas
Algebraic transformations of Gauss hypergeometric functions
高斯超几何函数的代数变换
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V.Raimundas;Mark van Hoeij;R. Vidunas;R. Vidunas;V.Raimundas;Vidunas Raimundas;R. Vidunas;V.Raimundas;V.Raimundas;R. Vidunas;R. Vidunas
  • 通讯作者:
    R. Vidunas
A generalization of Clausen's identity
克劳森身份的概括
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    V.Raimundas;Mark van Hoeij;R. Vidunas;R. Vidunas
  • 通讯作者:
    R. Vidunas

Mark van Hoeij的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark van Hoeij', 18)}}的其他基金

AF: Small: Solving and Simplifying Algebraic, Differential, and Difference Equations.
AF:小:求解和简化代数方程、微分方程和差分方程。
  • 批准号:
    2007959
  • 财政年份:
    2020
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant
AF: Small: A-Hypergeometric Solutions of Linear Differential Equations
AF:小:线性微分方程的 A 超几何解
  • 批准号:
    1618657
  • 财政年份:
    2016
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant
AF:Small: Linear Differential Equations with a Convergent Integer Series Solution
AF:Small:具有收敛整数级数解的线性微分方程
  • 批准号:
    1319547
  • 财政年份:
    2013
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant
Closed Form Solutions for Linear Differential and Difference Equations
线性微分方程和差分方程的闭式解
  • 批准号:
    0728853
  • 财政年份:
    2007
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Continuing Grant
Simplifying Algebraic Numbers and Algebraic Functions
简化代数数和代数函数
  • 批准号:
    0511544
  • 财政年份:
    2005
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant
East Coast Computer Algebra Day 2001
2001 年东海岸计算机代数日
  • 批准号:
    0112495
  • 财政年份:
    2001
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant
Algorithms for Linear Differential Equations and Algebraic Functions.
线性微分方程和代数函数的算法。
  • 批准号:
    0098034
  • 财政年份:
    2001
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant
Algorithms for Solving Linear Recurrence Equations
求解线性递推方程的算法
  • 批准号:
    9805983
  • 财政年份:
    1998
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
  • 批准号:
    32370966
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Multisensory Augmented Reality as a bridge to audio-only accommodations for inclusive STEM interactive digital media
多感官增强现实作为包容性 STEM 交互式数字媒体的纯音频住宿的桥梁
  • 批准号:
    10693600
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
Mission Empower
使命赋能
  • 批准号:
    10693461
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
A Digital Health Technology to Prevent Family Violence and Improve Child Mental Health
预防家庭暴力、改善儿童心理健康的数字健康技术
  • 批准号:
    10604116
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
    Standard Grant
Hats & Ladders for Health: Data-driven Decision-Making for Future Health Citizens and Professionals
帽子
  • 批准号:
    10696572
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了