AF: Small: Computational Methods for Difference-Differential Equations
AF:小:差分微分方程的计算方法
基本信息
- 批准号:1016608
- 负责人:
- 金额:$ 14.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is aimed at developing constructive methods and algorithms for computational analysis of systems of partial algebraic difference-differential equations (PADDEs) and description of their solution sets. Such systems arise in a wide variety of problems in mathematics and its applications including mathematical physics, automatic control, dynamical systems, mechanics, molecular chemistry, and cellular biology.The key research objectives of this project are: (1) development of the theoretical foundation and algorithms for difference-differential elimination, in particular for decomposing solution sets of systems of PADDEs into unions of "simple" sets; (2) extension of the constructive methods of difference-differential algebra to the computational analysis of systems of partial differential equations (PDEs) with group action (this is of special interest for applications, since the solutions of fundamental systems of PDEs governing physical fields must be invariant with respect to certain group actions); (3) elaboration of methods and algorithms for computation of dimension polynomials that express Einstein's strength of a system of PADDEs. Such algorithms, in particular, will allow one to choose optimal (in the sense of A. Einstein) systems of PDEs for mathematical models of physical processes.The main methods and approaches to be used include the characteristic set technique, which will be extended to rings of difference-differential polynomials, generalized Groebner basis method for difference-differential modules, the technique of univariate and multivariate dimension polynomials, and decomposition methods for PADDEs.Despite the over sixty-year history of algorithmic approaches in differential and difference algebra, initiated by J. Ritt, E. Kolchin, R. Cohn and recently expanded by M. Bronstein, X. Gao, P. Hendrics, and M. Singer, among many others, there are no computational methods efficient enough to allow one to determine structures of solution sets of systems of algebraic difference-differential equations in many cases of interest. The proposed activity will result in the improvement of the existing algorithmic methods for PADDEs and more general systems of partial differential equations with group action, development of the constructive theory of difference and difference-differential ideals and, as a consequence, creation of new computational techniques for analysis of partial difference and difference-differential equations and their solution sets.The research will develop algorithms and computational techniques that will be of use to analysts, physicists, engineers, and scientists in many other fields where the theoretical description of processes involves algebraic differential, difference, or difference-differential equations. The resulting algorithms will be the basis of code appearing in symbolic computation computer packages used in education and research in mathematical physics, automatic control, mechanics, biology, and in many other areas as well. The educational component of the project also includes an interdisciplinary program that will involve mathematics, computer science, physics, and engineering majors in training and research with the active use of computer algebra methods.
这项研究旨在开发建设性方法和算法,以用于对部分代数差异方程(PADDES)系统系统的计算分析及其解决方案集的描述。这种系统在数学及其应用中出现了各种各样的问题,包括数学物理,自动控制,动力学系统,力学,分子化学和细胞生物学。该项目的关键研究目标是:(1)开发理论基础和算法,用于差异化的差异,尤其是分化解决方案的差异化解决方案集合的系统。 (2)将差异分别代数的建设性方法扩展到具有组动作的部分微分方程(PDE)系统的计算分析(这是应用程序的特别兴趣,因为PDES的基本系统的解决方案必须与某些小组行动相关的PDES系统的基本系统是不变的); (3)详细阐述了计算尺寸多项式的方法和算法,这些多项式表达了爱因斯坦的强度。 Such algorithms, in particular, will allow one to choose optimal (in the sense of A. Einstein) systems of PDEs for mathematical models of physical processes.The main methods and approaches to be used include the characteristic set technique, which will be extended to rings of difference-differential polynomials, generalized Groebner basis method for difference-differential modules, the technique of univariate and multivariate dimension由差异和差异代数的算法方法的算法和差异方法的历史多六十年,由J. Ritt,E。Kolchin,R。Cohn和最近扩展,由M. Bronstein,X. Gao,X.Gao,P。在许多感兴趣的情况下,代数差异方程。所提出的活动将导致改善用于PADDE的算法方法和偏微分方程的更通用系统,并通过群体行动,发展差异和差异定义理想的建设性理论的发展,并因此而创建新的计算技术,用于分析部分差异和差异方程式和其解决方案的分析技术和计算的方法。在许多其他领域的物理学家,工程师和科学家,这些过程的理论描述涉及代数差异,差异或差异方程。由此产生的算法将是在数学物理学,自动控制,力学,生物学以及许多其他领域的教育和研究中使用的符号计算计算机软件包中出现的代码的基础。 该项目的教育组成部分还包括一个跨学科计划,该计划将涉及数学,计算机科学,物理和工程专业的培训和研究,并通过积极使用计算机代数方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Levin其他文献
New Multivariate Dimension Polynomials of Inversive Difference Field Extensions
逆差分域扩展的新多元维多项式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexander Levin - 通讯作者:
Alexander Levin
Estimation of Affine Jump-Diffusions Using Realized Variance and Bipower Variation in Empirical Characteristic Function Method
经验特征函数法中实现方差和双幂方差的仿射跳跃扩散估计
- DOI:
10.2139/ssrn.2389046 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alexander Levin;V. Khramtsov - 通讯作者:
V. Khramtsov
Influence of a Foreign Language on a Cognitive Development of Personality
外语对人格认知发展的影响
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Korneeva;T. Kosacheva;O. Parpura;Alexander Levin;T. Dobrydina - 通讯作者:
T. Dobrydina
Short-Rate Term Structure Models
短期利率期限结构模型
- DOI:
10.1002/9781118182635.efm0122 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Alexander Levin - 通讯作者:
Alexander Levin
Effective Empirical Characteristic Function Methods for Estimation of Affine Diffusions Using the Realized Variance
使用已实现方差估计仿射扩散的有效经验特征函数方法
- DOI:
10.2139/ssrn.1993301 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Alexander Levin;V. Khramtsov - 通讯作者:
V. Khramtsov
Alexander Levin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Levin', 18)}}的其他基金
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
$ 14.31万 - 项目类别:
Standard Grant
AF: Small: Computational Algebraic Methods for Systems of Partial Difference-Differential Equations
AF:小:偏差分-微分方程组的计算代数方法
- 批准号:
1714425 - 财政年份:2017
- 资助金额:
$ 14.31万 - 项目类别:
Standard Grant
相似国自然基金
基于QM/MM的计算机辅助药物设计方法对去泛素化酶(DUBs)共价小分子抑制剂的设计与研究
- 批准号:82304385
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于加权隐私保护计算的非小细胞肺癌辅助诊断方法研究
- 批准号:62301006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于小增益理论的物联网聚合计算鲁棒稳定性分析
- 批准号:62303112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向异柠檬酸裂解酶(ICL1)的抗结核小分子共价抑制机理的理论计算研究
- 批准号:22303075
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算流体动力学的太阳系复杂形状小天体正高系统建模研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 14.31万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 14.31万 - 项目类别:
Standard Grant
AF: Small: Computational Geometry from a Fine-Grained Perspective
AF:小:细粒度角度的计算几何
- 批准号:
2224271 - 财政年份:2022
- 资助金额:
$ 14.31万 - 项目类别:
Standard Grant
AF: Small: Complexity and Computational Social Choice
AF:小:复杂性和计算社会选择
- 批准号:
2006496 - 财政年份:2020
- 资助金额:
$ 14.31万 - 项目类别:
Standard Grant
AF: Small: Quantum Computational Pseudorandomness with Applications
AF:小:量子计算伪随机性及其应用
- 批准号:
2041841 - 财政年份:2020
- 资助金额:
$ 14.31万 - 项目类别:
Standard Grant