Collaborative Research: Multiscale analysis of geological structures that influence crustal seismic anisotropy
合作研究:影响地壳地震各向异性的地质结构的多尺度分析
基本信息
- 批准号:1015599
- 负责人:
- 金额:$ 16.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is a study of crustal material anisotropy with a focus on macroscale structural geometries and how they will modify the seismic response of rock fabrics. Seismic anisotropy is the cumulative interplay between propagating seismic waves and anisotropic earth material that manifests itself through the directional dependence of seismic wave speeds. Unraveling this effect in deformed crustal terranes is complex due to several factors, such as 3D geological geometry and heterogeneity, microscale fabric, bending of seismic raypaths due to velocity gradients, field experiments that may not offer full azimuthal coverage, and the observation of anisotropy as second-order waveform or traveltime features. While seismic anisotropy can originate from upper crustal fractures or by organized fine-scale layering of isotropic material, material anisotropy is also a cause and involves at least four factors: (1) microstructural characteristics including spatial arrangement, modal abundances, and crystallographic and shape orientations of constituent minerals, (2) inherent azimuthal variation of properties and approximation using symmetry classes, (3) bulk representation (effective media) of material properties at different scales, and (4) the types and internal geometries of macroscale structures. The reorientation of sample-scale material anisotropy by macroscale structures imparts its own effect. A seismic wave will produce one type of signal response due to material; it can produce a different response due to a package of rocks that are reoriented due to the geometry of a structure. The researchers will use the concept of seismic effective media to represent earth volumes through which seismic waves travel. They will employ a representation of earth volumes that allow for a tensorial representation of effective media. This allows via the wave equation an algebraic tensor manipulation to separate the structural geometry and the rocks composing the structure. A primary goal of the project is to define the contributions of structure to form effective media. Each structure has a geometrical "impulse response" which will modify a rock texture into an effective medium representation of the structure. A second goal of the project is to understand how the role of microscale rock fabrics contribute towards the effective media for given structures. Both combine to produce the net effective medium that a propagating wave responds to. They will conduct a quantitative and systematic study of common crustal structural geometries and how they modify rock anisotropy, and represent structures using analytical geometry surfaces and create a rigorous and integrated methodology to calculate effective media at different scales and their combined effects on seismic wave propagation. They will also examine how the tensorial form of microscale rock fabrics are sensitive to the modal compositions and statistical orientations of constituent minerals. Results of this project will be designed to aid the seismic interpretation of real anisotropic seismic data. This project brings together expertise in seismology, structural/microstructural geology and theoretical/computational mechanics to help develop a quantitative framework for the analysis of material anisotropy and resulting seismic anisotropy in deformed polymineralic rocks of the continental crust.
该项目是对地壳材料各向异性的研究,重点是宏观结构几何形状以及它们将如何修改岩石织物的地震反应。地震各向异性是传播地震波和各向异性地球物质之间的累积相互作用,它们通过地震波速度的方向依赖性表现出来。 由于几个因素,例如3D地质几何形状和异质性,显微镜织物,由于速度梯度引起的地震射线Pathers的弯曲,现场实验可能无法提供全部Azimuthal的覆盖范围,以及对Anisotropy的二阶波动或第二阶段的观察。 While seismic anisotropy can originate from upper crustal fractures or by organized fine-scale layering of isotropic material, material anisotropy is also a cause and involves at least four factors: (1) microstructural characteristics including spatial arrangement, modal abundances, and crystallographic and shape orientations of constituent minerals, (2) inherent azimuthal variation of properties and approximation using对称类别,(3)在不同尺度上的材料特性的体积表示(有效培养基),以及(4)宏观结构的类型和内部几何形状。 宏观结构对样品级材料各向异性的重新定位赋予其自身效果。 地震波将由于物质引起的一种类型的信号响应。由于结构的几何形状,由于岩石的重新定位,因此可以产生不同的响应。 研究人员将使用地震有效培养基的概念来表示地震波传播的地球量。 他们将采用地球量的代表,允许有效培养基的张力表示。 这允许通过波方程来进行代数张量操作,以分离组成结构的结构几何形状和岩石。 该项目的主要目标是定义结构形成有效媒体的贡献。每个结构都有一个几何“脉冲响应”,它将将岩石的纹理修改为结构的有效介质表示。 该项目的第二个目标是了解微观岩石织物的作用如何为给定结构的有效媒体做出贡献。两者结合以产生传播波响应的净有效培养基。 他们将对常见的地壳结构几何形状以及它们如何修饰岩石各向异性进行定量和系统的研究,并使用分析几何表面表示结构,并创建一种严格而综合的方法,以在不同的尺度上计算有效的培养基及其对震荡波传播的综合作用。 他们还将研究微观岩石织物的张力形式如何敏感组成矿物的模态组成和统计取向。 该项目的结果将旨在帮助对实际各向异性地震数据的地震解释。该项目汇集了地震学,结构/微观结构地质学和理论/计算力学方面的专业知识,以帮助开发一个分析材料各向异性分析的定量框架,并在大陆壳的变形多层次岩石中产生地震性各向异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Okaya其他文献
David Okaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Okaya', 18)}}的其他基金
Collaborative Research: Controls on along-strike variations in locked and creeping megathrust behavior at the Hikuran convergent margin
合作研究:控制希库兰会聚边缘锁定和蠕动巨型逆冲行为的沿走向变化
- 批准号:
1616847 - 财政年份:2016
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Collaborative Research: Reorganization of stresses beneath greater Tokyo after the 2011 Tohoku-Oki M9 earthquake
合作研究:2011 年东北冲 M9 级地震后大东京地区地下应力的重组
- 批准号:
1215757 - 财政年份:2012
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Seismogenic zone processes of Hikurangi subduction, New Zealand: illumination using the SAHKE seismic project
新西兰 Hikurangi 俯冲带的地震带过程:使用 SAHKE 地震项目进行照明
- 批准号:
1061557 - 财政年份:2011
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Collaborative Research: TAIGER's Tale: Tectonics of Subduction to Collision
合作研究:TAIGER 的故事:俯冲到碰撞的构造
- 批准号:
1009691 - 财政年份:2010
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Workshop to Prepare a Summary Volume for the Geophysical Investigation of a Modern Continent-Continent Collisional Orogen, The Southern Alps, New Zealand
新西兰南阿尔卑斯山现代大陆-大陆碰撞造山带地球物理调查总结卷编写研讨会
- 批准号:
0450386 - 财政年份:2005
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Investigation of the Geodynamics of the Taiwan Orogeny (TAIGER)
合作研究:台湾造山运动地球动力学综合研究(TAIGER)
- 批准号:
0409266 - 财政年份:2004
- 资助金额:
$ 16.06万 - 项目类别:
Continuing Grant
Collaborative Research: Mapping Crustal Tectonic Structure Using Seismic Anisotropy
合作研究:利用地震各向异性绘制地壳构造结构图
- 批准号:
0337340 - 财政年份:2004
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Collaborative Research: Retreating-Trench, Extension, and Accretion Tectonics (RETREAT): A Multi-Disciplinary Study of the Northern Apennines
合作研究:后退-海沟、伸展和增生构造(RETREAT):北亚平宁山脉的多学科研究
- 批准号:
0208461 - 财政年份:2003
- 资助金额:
$ 16.06万 - 项目类别:
Continuing Grant
Signatures of Seismic Anisotropy in Crustal Terranes: Southeastern California
地壳地震各向异性特征:加利福尼亚州东南部
- 批准号:
9980570 - 财政年份:2000
- 资助金额:
$ 16.06万 - 项目类别:
Continuing Grant
Seismic Reflection Imaging of the Northridge Earthquake Epicentral Region
北岭地震震中区的地震反射成像
- 批准号:
9416773 - 财政年份:1994
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全固态锂电池硫化物固体电解质的合成、调控及多尺度中子散射研究
- 批准号:12375301
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
蓝斑-内嗅皮质-海马神经环路在阿尔茨海默病早期进程中的改变及其机制的多模态多尺度研究
- 批准号:32371197
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤微环境-伤害性感觉神经多尺度串扰调控肿瘤免疫逃逸的机制及应用研究
- 批准号:82372862
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
针对人工表面等离激元器件多尺度电磁隐身问题的高效DGTD-HDGTD混合时域算法的研究
- 批准号:62301133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 16.06万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant