GOALI:Deformation Mechanisms and Microstructure Evolution in Thermo-Mechanical Processing of Mg Alloys for Structural Automotive Applications

目标:汽车结构应用镁合金热机械加工中的变形机制和微观结构演变

基本信息

  • 批准号:
    1006784
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: Although it has been widely observed that deformation twinning plays a dominant role in the deformation response of Mg alloys at room and elevated temperatures, its precise role on the ductility of these alloys is not yet understood. Establishing the physics of the underlying deformation mechanisms in Mg alloys has been complicated by many factors, including (i) the dramatic morphological and strain hardening rate differences between the two families of deformation twins observed in Mg alloys, (ii) the strong influence of grain size and temperature on the extent of deformation twinning, (iii) the activation of dynamic recrystallization during plastic deformation at elevated temperature, (iv) the activation of rotational dynamic recrystallization in some coarse-grained Mg alloys in certain temperature ranges, and (v) the potentially different influences of extension and contraction twins on the recrystallization processes. It is proposed to undertake a detailed experimental and modeling study to develop quantitative insights into the underlying deformation mechanisms in thermo-mechanical processing of two specific Mg alloys: AZ31 and Mg-0.2wt% Ce. Experimental investigations will include room and high temperature simple compression tests which will be interrupted for detailed microstructure investigations using orientation image microscopy and measurements of the local stored energy at the grain scale in plastically deformed samples. It is also proposed to develop and validate new physics-based elastic-viscoplastic crystal plasticity models to predict the anisotropic stress-strain response and the evolution of the microstructure in thermo-mechanical deformation of these alloys. These models will be subsequently employed to develop novel processing routes for cost-effective manufacture of structural automotive parts made from Mg alloys.NON-TECHNICAL SUMMARY: Strong but light magnesium (Mg) alloys offer tremendous potential for dramatic increases in the fuel efficiency of automobiles, with corresponding reductions in automotive CO2 emissions. The primary impediment to widespread application of these alloys is their very limited room temperature ductility, which prevents successful manufacture of the desired automotive structural components by standard inexpensive wrought processing methods. This proposal aims to produce the fundamental physical data sets and computational models of Mg alloy structure which are needed to find ways to improve the room temperature ductility of these alloys. The proposed interdisciplinary collaboration between researchers at Drexel University and at the General Motors Global R&D Center will result in the development of better Mg alloys for the automotive industry and may also have implications for the processing of other metals with similar crystalline structures. This project will produce two PhDs skilled in interdisciplinary research involving novel material characterization techniques, advanced computational mechanics, and applied mathematics. The project will expose numerous domestic undergraduate and graduate students, especially members of underrepresented groups in science and engineering, to cutting edge research methodologies and equipment.
技术摘要:尽管人们已经广泛观察到变形孪生在镁合金在室温和高温下的变形响应中起主导作用,但其对这些合金延展性的确切作用尚不清楚。建立镁合金潜在变形机制的物理过程因许多因素而变得复杂,包括(i)在镁合金中观察到的两个变形孪晶家族之间显着的形态和应变硬化率差异,(ii)晶粒的强烈影响尺寸和温度对变形孪晶程度的影响,(iii)高温塑性变形过程中动态再结晶的激活,(iv)某些粗晶镁合金在某些温度范围内旋转动态再结晶的激活,以及(v) 拉伸和收缩孪晶对再结晶过程的潜在不同影响。建议进行详细的实验和建模研究,以定量了解两种特定镁合金:AZ31 和 Mg-0.2wt% Ce 热机械加工中的潜在变形机制。实验研究将包括室温和高温简单压缩测试,这些测试将被中断,以使用定向图像显微镜进行详细的微观结构研究,并测量塑性变形样品中晶粒尺度的局部存储能量。还建议开发和验证新的基于物理的弹粘塑性晶体塑性模型,以预测这些合金热机械变形中的各向异性应力应变响应和微观结构的演变。这些模型随后将用于开发新颖的加工路线,以经济高效地制造由镁合金制成的结构汽车零件。非技术摘要:高强度但轻质的镁 (Mg) 合金为大幅提高汽车燃油效率提供了巨大的潜力,汽车二氧化碳排放量相应减少。这些合金广泛应用的主要障碍是它们非常有限的室温延展性,这阻碍了通过标准的廉价锻造加工方法成功制造所需的汽车结构部件。该提案旨在产生镁合金结构的基本物理数据集和计算模型,以找到提高这些合金的室温延展性的方法。德雷塞尔大学和通用汽车全球研发中心的研究人员之间拟议的跨学科合作将为汽车行业开发出更好的镁合金,并且也可能对具有类似晶体结构的其他金属的加工产生影响。该项目将培养两名擅长跨学科研究的博士学位,涉及新型材料表征技术、高级计算力学和应用数学。该项目将使众多国内本科生和研究生,特别是科学和工程领域代表性不足的群体的成员,接触到最先进的研究方法和设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Surya Kalidindi其他文献

Surya Kalidindi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Surya Kalidindi', 18)}}的其他基金

Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
  • 批准号:
    2221104
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
A Machine Learning Framework for Bridging the Mechanical Responses of a Material at Multiple Structure Length Scales
用于桥接材料在多个结构长度尺度上的机械响应的机器学习框架
  • 批准号:
    2027105
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient Learning of Process-Structure-Property Models in Value-Driven Materials Design
协作研究:价值驱动材料设计中过程-结构-性能模型的有效学习
  • 批准号:
    1761406
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Collaboration to Accelerate the Discovery of New Alloys for Additive Manufacturing
DMREF/合作研究:合作加速增材制造新合金的发现
  • 批准号:
    1435237
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
iREU: Interdisciplinary Research Experience for Undergraduates in Medicine, Energy, and Advanced Manufacturing
iREU:医学、能源和先进制造领域本科生的跨学科研究经验
  • 批准号:
    1332417
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
GOALI:Deformation Mechanisms and Microstructure Evolution in Thermo-Mechanical Processing of Mg Alloys for Structural Automotive Applications
目标:汽车结构应用镁合金热机械加工中的变形机制和微观结构演变
  • 批准号:
    1332422
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
AHSS: Development of Novel Finite Element Simulation Tools that Implement Crystal Plasticity Constitutive Theories Using an Efficient Spectral Framework
AHSS:开发新型有限元仿真工具,使用高效的谱框架实现晶体塑性本构理论
  • 批准号:
    1341888
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
iREU: Interdisciplinary Research Experience for Undergraduates in Medicine, Energy, and Advanced Manufacturing
iREU:医学、能源和先进制造领域本科生的跨学科研究经验
  • 批准号:
    1005090
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
AHSS: Development of Novel Finite Element Simulation Tools that Implement Crystal Plasticity Constitutive Theories Using an Efficient Spectral Framework
AHSS:开发新型有限元仿真工具,使用高效的谱框架实现晶体塑性本构理论
  • 批准号:
    0727931
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
REU Site: Drexel Research Experience in Advanced Materials (DREAM)
REU 网站:德雷塞尔先进材料研究经验 (DREAM)
  • 批准号:
    0649033
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

贫岩浆型马拉维裂谷的壳幔结构与形变机制
  • 批准号:
    42374054
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
柔性光电系统形变与光强耦合机制及抗干扰方法研究
  • 批准号:
    12302216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多级分散体系下沥青砂浆负载形变方向性特征及其力学性能宏细观关联机制
  • 批准号:
    52378435
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
原子尺度下原位动态研究硼笼结构轻质陶瓷材料的形变机制
  • 批准号:
    52302048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于软物质慢动力学模型的再制干酪结构形变分析与功能定向调控机制
  • 批准号:
    32372381
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
  • 批准号:
    DP240103328
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Projects
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.
开发一种数据驱动的实时电子显微镜方法,以解释亚微观水平结构材料的塑性变形和断裂机制。
  • 批准号:
    23H00238
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Deformation Mechanisms in Microstructurally Tailored High Strength Alloys Near the Ideal Limit
合作研究:接近理想极限的微观结构定制高强度合金的变形机制
  • 批准号:
    2310306
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了