The Geometry and Topology of Heegaard Splittings
Heegaard 分裂的几何和拓扑
基本信息
- 批准号:1006369
- 负责人:
- 金额:$ 11.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal objective of this project is to develop new methods that will produce a unified and systematic approach to understanding and classifying isotopy classes of Heegaard splittings in 3-manifolds. In addition to strengthening the foundations of the field, such an approach will lead to new results, as well as opening up the field to a wider audience. The new approach uses geometric intuition from recent results connecting Heegaard splittings to hyperbolic geometry in order to expand and clarify two existing methods: thin position and double sweep-outs/graphics. The PI has recently made significant breakthroughs in understanding and expanding these methods in this direction and proposes to further explore their potential applications.Since their introduction in the early 1900s, Heegaard splittings have been a vital tool for placing 3-manifolds in an accessible context. They provide a good introduction to geometric topology and an active area of research for young mathematicians. Right now, the core of the theory of Heegaard splittings is appropriate for beginning graduate students. However, new research continues to provide simpler proofs of the main theorems and more intuitive approaches to the fundamental concepts, so that parts of the field are becoming accessible to advanced undergraduates. The research project described here will eventually lead to problems that are appropriate for an undergraduate thesis or even an REU. This will provide a gateway for students into other areas of algebraic and geometric topology. It should be noted that OSU has a substantial population of Native American and other underserved minorities, and Oklahoma is geographically isolated from the academic centers of the country. Through involvement in the PI's research, mathematically talented students at OSU will have the opportunity to develop their talents, increase their visibility and confidence and prepare themselves for further success in mathematics and science.
该项目的主要目的是开发新方法,该方法将产生一种统一的,系统的方法来理解和分类3个manifolds中Heegaard分裂的同位素类别。 除了加强该领域的基础外,这种方法还将带来新的结果,并向更广泛的受众开放领域。 这种新方法使用几何直觉,从将Heegaard分裂连接到双曲线几何形状的最新结果,以扩展和阐明两种现有方法:薄位置和双重扫描/图形。 PI最近在理解和扩展这些方法方面取得了重大突破,并提议进一步探索其潜在的应用。由于他们在1900年代初期的引入,Heegaard分裂一直是将3个元件放置在可访问环境中的至关重要的工具。 它们很好地介绍了几何拓扑和年轻数学家的积极研究领域。 目前,Heegaard分裂理论的核心适合初学者。 但是,新的研究继续为主要定理提供了更简单的证据,并为基本概念提供了更直观的方法,以便该领域的某些部分可以被高级本科生访问。 此处描述的研究项目最终将导致适合本科论文甚至REU的问题。 这将为学生进入代数和几何拓扑的其他领域。 应当指出的是,OSU拥有大量美洲原住民和其他服务不足的少数民族,俄克拉荷马州与该国的学术中心隔绝了俄克拉荷马州。 通过参与PI的研究,OSU的数学才华横溢的学生将有机会发展自己的才能,提高其知名度和信心,并为在数学和科学方面的进一步成功做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Jesse Johnson其他文献
Modeling long-term stability of the Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic nuclide inheritance
东南极洲费拉尔冰川长期稳定性建模:对解释宇宙成因核素遗传的影响
- DOI:10.1029/2006jf00059910.1029/2006jf000599
- 发表时间:20072007
- 期刊:
- 影响因子:0
- 作者:Jesse Johnson;J. StaigerJesse Johnson;J. Staiger
- 通讯作者:J. StaigerJ. Staiger
Acute heart failure within 10 days of dual-chamber pacemaker implantation: A novel etiology
双腔起搏器植入后 10 天内急性心力衰竭:一种新的病因
- DOI:
- 发表时间:20192019
- 期刊:
- 影响因子:0.6
- 作者:J. Noto;Jesse Johnson;S. Longo;S. NandaJ. Noto;Jesse Johnson;S. Longo;S. Nanda
- 通讯作者:S. NandaS. Nanda
Classifying and Using Polynomials as Maps of the Field F_{p^d}s
分类并使用多项式作为域 F_{p^d}s 的映射
- DOI:
- 发表时间:20032003
- 期刊:
- 影响因子:0
- 作者:D. Cutler;Jesse Johnson;Ben Rosenfield;Kudzai ZvomaD. Cutler;Jesse Johnson;Ben Rosenfield;Kudzai Zvoma
- 通讯作者:Kudzai ZvomaKudzai Zvoma
An application of topological graph clustering to protein function prediction
拓扑图聚类在蛋白质功能预测中的应用
- DOI:
- 发表时间:20142014
- 期刊:
- 影响因子:0
- 作者:R. S. Bowman;Douglas R. Heisterkamp;Jesse Johnson;Danielle O'DonnolR. S. Bowman;Douglas R. Heisterkamp;Jesse Johnson;Danielle O'Donnol
- 通讯作者:Danielle O'DonnolDanielle O'Donnol
Topological Data Analysis and Machine Learning Theory
拓扑数据分析和机器学习理论
- DOI:
- 发表时间:20122012
- 期刊:
- 影响因子:0
- 作者:G. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu WangG. Carlsson;Rick Jardine;Dmitry Feichtner;D. Morozov;D. Attali;A. Bak;M. Belkin;Peter Bubenik;Brittany Terese Fasy;Jesse Johnson;Matthew Kahle;Gilad Lerman;Sayan Mukherjee;Monica Nicolau;A. Patel;Yusu Wang
- 通讯作者:Yusu WangYusu Wang
共 47 条
- 1
- 2
- 3
- 4
- 5
- 6
- 10
Jesse Johnson的其他基金
RII Track-2 FEC: Natural Resource Supply Chain Optimization using Aerial Imagery Interpreted with Machine Learning Methods
RII Track-2 FEC:使用机器学习方法解释的航空图像优化自然资源供应链
- 批准号:21196892119689
- 财政年份:2022
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Cooperative AgreementCooperative Agreement
Collaborative Research: GRate – Integrating data and modeling to quantify rates of Greenland Ice Sheet change, Holocene to future
合作研究:GRate — 整合数据和模型来量化格陵兰冰盖变化率、全新世到未来
- 批准号:21076052107605
- 财政年份:2021
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers
合作研究:南极海洋出口冰川的稳定性和动力学
- 批准号:15435331543533
- 财政年份:2016
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: Ice sheet sensitivity in a changing Arctic system - using geologic data and modeling to test the stable Greenland Ice Sheet hypothesis
合作研究:不断变化的北极系统中的冰盖敏感性 - 使用地质数据和建模来检验稳定的格陵兰冰盖假说
- 批准号:15044571504457
- 财政年份:2015
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: The Land Unknown: Assessing Data Requirements for Modeling Change in the Antarctic Ice Sheet with an Emphasis on the Subglacial Bed
合作研究:未知的土地:评估南极冰盖变化建模的数据要求,重点关注冰下床
- 批准号:13475601347560
- 财政年份:2013
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: The Land Unknown: Assessing Data Requirements for Modeling Change in the Antarctic Ice Sheet with an Emphasis on the Subglacial Bed
合作研究:未知的土地:评估南极冰盖变化建模的数据要求,重点关注冰下床
- 批准号:11421651142165
- 财政年份:2012
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Standard GrantStandard Grant
2012 Redbud Geometry/Topology Conference
2012年紫荆花几何/拓扑会议
- 批准号:11487241148724
- 财政年份:2011
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Standard GrantStandard Grant
CMG COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model's adjoint to support sea level change assessment
CMG 合作研究:利用大规模高阶冰盖模型的伴随物进行冰盖敏感性和稳定性分析,以支持海平面变化评估
- 批准号:09346620934662
- 财政年份:2009
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Modelfor Scientists and Educators
合作研究:IPY,下一代:科学家和教育工作者的社区冰盖模型
- 批准号:06321610632161
- 财政年份:2007
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Standard GrantStandard Grant
Post Doctoral Research Fellowship
博士后研究奖学金
- 批准号:06023680602368
- 财政年份:2006
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:FellowshipFellowship
相似国自然基金
三维流形及其相关领域专题讲习班
- 批准号:12026411
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
三维切触拓扑,Heegaard Floer同调,和范畴化
- 批准号:11601256
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
三维流形Heegaard曲面的稳定化距离与拓扑指数
- 批准号:11401069
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
低维流形的几何与拓扑
- 批准号:11431009
- 批准年份:2014
- 资助金额:280.0 万元
- 项目类别:重点项目
流形拓扑学
- 批准号:11131008
- 批准年份:2011
- 资助金额:220.0 万元
- 项目类别:重点项目
相似海外基金
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:22371312237131
- 财政年份:2023
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Continuing GrantContinuing Grant
MPS-Ascend: Topics in Low-Dimensional Topology and Heegaard Floer Theory
MPS-Ascend:低维拓扑和 Heegaard Floer 理论主题
- 批准号:22130272213027
- 财政年份:2022
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Fellowship AwardFellowship Award
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:20038922003892
- 财政年份:2020
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Continuing GrantContinuing Grant
Heegaard Splitting and Topology of 3-Manifolds
三流形的 Heegaard 分裂和拓扑
- 批准号:19062351906235
- 财政年份:2019
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Continuing GrantContinuing Grant
Heegaard Floer Homology and Low-Dimensional Topology
Heegaard Floer 同调和低维拓扑
- 批准号:18119001811900
- 财政年份:2018
- 资助金额:$ 11.64万$ 11.64万
- 项目类别:Continuing GrantContinuing Grant