Numerical Simulations and Theoretical Studies of the Plasma Dynamo and Couette Flow Experiment
等离子体发电机和库埃特流实验的数值模拟和理论研究
基本信息
- 批准号:0962244
- 负责人:
- 金额:$ 29.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-24 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds research to carry out numerical simulations in support of Plasma Dynamo and Couette Flow experiments. A Plasma Couette experiment, the first of its kind, has been constructed to study Magnetorotational Instability (MRI) in a hot, unmagnetized and fast flowing plasma. Plasma is confined by a strong multipole magnetic field at the plasma surface. The goals of the experiment are to study the MRI and possible self-generation of magnetic field by MRI-driven turbulence at high magnetic Reynolds numbers (the regime applicable to astrophysical plasmas). If successful, the concept could be readily extended to a larger, plasma-based dynamo experiment, studying the self-generation of magnetic field (MHD dynamo) but through hydrodynamic-driven turbulence in a confined plasma. Numerical modeling and theoretical studies are crucial for advancing the understanding of these two experiments and assuring their ultimate success. Numerical simulations using the extended MHD code, NIMROD, will be done and the numerical results will be directly compared with the experimental measurements. Numerical simulations are also expected to provide a guidance for the experimental design.The proposed simulations with NIMROD code would strongly benefit the validation of a code, NIMROD, extensively used by the Magnetic Fusion community. In addition, the Magneto-rotational Instability (MRI) is thought to play a vital role in many astrophysical settings. Thus it is essential to have a line of physical experiments and computational models carried out that can test, guide and perhaps challenge many of the precepts now being applied in theoretical models with regard to MRI. This proposal was submitted to the NSF-DoE Partnership in Plasma Science and Engineering joint solicitation 08-589. This award is being funded jointly by the Divisions of Physics and Astronomical Sciences of the Mathematical and Physical Sciences Directorate.
该奖项资助进行数值模拟的研究,以支持等离子体发电机和库埃特流实验。等离子体库埃特实验是此类实验中的第一个,旨在研究热、未磁化和快速流动等离子体中的磁旋转不稳定性 (MRI)。等离子体受到等离子体表面强多极磁场的限制。该实验的目标是研究 MRI 以及在高磁雷诺数(适用于天体物理等离子体的状态)下由 MRI 驱动的湍流可能产生的磁场。如果成功,这一概念可以很容易地扩展到更大的基于等离子体的发电机实验,研究磁场的自生成(MHD发电机),但通过受限等离子体中的流体动力学驱动的湍流。数值建模和理论研究对于增进对这两个实验的理解并确保其最终成功至关重要。 将使用扩展的 MHD 代码 NIMROD 进行数值模拟,并将数值结果直接与实验测量进行比较。数值模拟也有望为实验设计提供指导。所提出的使用 NIMROD 代码进行的模拟将极大地有利于磁聚变社区广泛使用的代码 NIMROD 的验证。此外,磁旋转不稳定性(MRI)被认为在许多天体物理环境中发挥着至关重要的作用。因此,有必要进行一系列物理实验和计算模型,以测试、指导甚至挑战目前在 MRI 理论模型中应用的许多规则。该提案已提交给 NSF-DoE 等离子体科学与工程合作伙伴联合征集 08-589。该奖项由数学和物理科学理事会的物理和天文科学部联合资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fatima Ebrahimi其他文献
Fatima Ebrahimi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fatima Ebrahimi', 18)}}的其他基金
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 29.53万 - 项目类别:
Standard Grant
Numerical Simulations and Theoretical Studies of the Plasma Dynamo and Couette Flow Experiment
等离子体发电机和库埃特流实验的数值模拟和理论研究
- 批准号:
0903926 - 财政年份:2009
- 资助金额:
$ 29.53万 - 项目类别:
Continuing Grant
相似国自然基金
电磁双曲超材料的数学理论与数值模拟
- 批准号:12301539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用流体非线性饱和机制抑制双等离子衰变不稳定性的理论与数值模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
边界层转捩诱导动态失稳的分叉理论分析与数值模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
退相干效应下的马约拉纳器件的输运性质的数值模拟与理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于体产生机制的射频感性耦合负氢离子源理论建模和数值模拟研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Theoretical Analyses of Plasma Processing for Novel and Diverse Materials Using Multi-Scale Numerical Simulations
使用多尺度数值模拟对新型和多样化材料的等离子体加工进行量子理论分析
- 批准号:
15H05736 - 财政年份:2015
- 资助金额:
$ 29.53万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Theoretical studies and numerical simulations of backward-wave photonic micro devices.
后波光子微器件的理论研究和数值模拟。
- 批准号:
1346547 - 财政年份:2013
- 资助金额:
$ 29.53万 - 项目类别:
Standard Grant
Theoretical studies and numerical simulations of backward-wave photonic micro devices.
后波光子微器件的理论研究和数值模拟。
- 批准号:
1028353 - 财政年份:2010
- 资助金额:
$ 29.53万 - 项目类别:
Standard Grant
Numerical Simulations and Theoretical Studies of the Plasma Dynamo and Couette Flow Experiment
等离子体发电机和库埃特流实验的数值模拟和理论研究
- 批准号:
0903926 - 财政年份:2009
- 资助金额:
$ 29.53万 - 项目类别:
Continuing Grant
Liquid crystalline materials in lubrication: theoretical approach and numerical simulations
润滑中的液晶材料:理论方法和数值模拟
- 批准号:
347363-2007 - 财政年份:2007
- 资助金额:
$ 29.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's